Xiaojin J Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6849930/publications.pdf

Version: 2024-02-01

		1040056	940533	
17	437	9	16	
papers	citations	h-index	g-index	
17	17	17	661	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Genome-wide analysis of the NAAT, DMAS, TOM, and ENA gene families in maize suggests their roles in mediating iron homeostasis. BMC Plant Biology, 2022, 22, 37.	3.6	3
2	<i>Maize Interveinal Chlorosis 1</i> links the Yang Cycle and Fe homeostasis through Nicotianamine biosynthesis. Plant Physiology, 2022, 188, 2131-2145.	4.8	2
3	Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter. Plant and Cell Physiology, 2022, 63, 521-534.	3.1	10
4	Pentatricopeptide repeat protein CNS1 regulates maize mitochondrial complex III assembly and seed development. Plant Physiology, 2022, 189, 611-627.	4.8	2
5	OsHSD2 interaction with and phosphorylation by OsCPK21 is essential for lipid metabolism during rice caryopsis development. Journal of Plant Physiology, 2022, 274, 153714.	3.5	0
6	OsCPK21 is required for pollen late-stage development in rice. Journal of Plant Physiology, 2019, 240, 153000.	3.5	10
7	Genome-scale mining of root-preferential genes from maize and characterization of their promoter activity. BMC Plant Biology, 2019, 19, 584.	3.6	9
8	A calcium-dependent protein kinase, ZmCPK32, specifically expressed in maize pollen to regulate pollen tube growth. PLoS ONE, 2018, 13, e0195787.	2.5	21
9	Rapid Method for Simultaneous Determination of Inositol Phosphates by IPC-ESI–MS/MS and Its Application in Nutrition and Genetic Research. Chromatographia, 2017, 80, 275-286.	1.3	4
10	Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Biochemical and Biophysical Research Communications, 2017, 493, 1450-1456.	2.1	62
11	Constitutive expression of the ZmZIP7 in Arabidopsis alters metal homeostasis and increases Fe and Zn content. Plant Physiology and Biochemistry, 2016, 106, 1-10.	5.8	31
12	Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. BMC Genomics, 2016, 17, 129.	2.8	24
13	Isolation of a maize ZmCl-1B promoter and characterization of its activity in transgenic maize and tobacco. Plant Cell Reports, 2015, 34, 1443-1457.	5.6	3
14	Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnology Journal, 2014, 12, 1286-1296.	8.3	16
15	Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize. BMC Genomics, 2013, 14, 238.	2.8	57
16	Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 2013, 13, 114.	3.6	169
17	Gene Structure Analysis of Rice ADP-ribosylation Factors (OsARFs) and Their mRNA Expression in Developing Rice Plants. Plant Molecular Biology Reporter, 2010, 28, 692-703.	1.8	14