Melpomeni Fani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6849772/publications.pdf Version: 2024-02-01

MELDOMENI FANI

#	Article	IF	CITATIONS
1	⁶⁸ Gaâ€PET: a powerful generatorâ€based alternative to cyclotronâ€based PET radiopharmaceuticals. Contrast Media and Molecular Imaging, 2008, 3, 53-63.	0.8	288
2	PET of Somatostatin Receptor–Positive Tumors Using ⁶⁴ Cu- and ⁶⁸ Ga-Somatostatin Antagonists: The Chelate Makes the Difference. Journal of Nuclear Medicine, 2011, 52, 1110-1118.	5.0	218
3	Comparison of Somatostatin Receptor Agonist and Antagonist for Peptide Receptor Radionuclide Therapy: A Pilot Study. Journal of Nuclear Medicine, 2014, 55, 1248-1252.	5.0	197
4	Somatostatin Receptor Antagonists for Imaging and Therapy. Journal of Nuclear Medicine, 2017, 58, 61S-66S.	5.0	188
5	Radiopharmaceutical development of radiolabelled peptides. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 11-30.	6.4	182
6	Radiopeptide Imaging and Therapy in Europe. Journal of Nuclear Medicine, 2011, 52, 42S-55S.	5.0	181
7	First Clinical Evidence That Imaging with Somatostatin Receptor Antagonists Is Feasible. Journal of Nuclear Medicine, 2011, 52, 1412-1417.	5.0	157
8	Novel ⁶⁴ Cu- and ⁶⁸ Ga-Labeled RGD Conjugates Show Improved PET Imaging of α _{μ2} β ₃ Integrin Expression and Facile Radiosynthesis. Journal of Nuclear Medicine, 2011, 52, 1276-1284.	5.0	141
9	Unexpected Sensitivity of sst ₂ Antagonists to N-Terminal Radiometal Modifications. Journal of Nuclear Medicine, 2012, 53, 1481-1489.	5.0	129
10	Sensitivity Comparison of ⁶⁸ Ga-OPS202 and ⁶⁸ Ga-DOTATOC PET/CT in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase II Imaging Study. Journal of Nuclear Medicine, 2018, 59, 915-921.	5.0	121
11	Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. European Journal of Cancer, 2021, 146, 56-73.	2.8	120
12	[68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1303-1312.	6.4	111
13	Localization of Hidden Insulinomas with ⁶⁸ Ga-DOTA-Exendin-4 PET/CT: A Pilot Study. Journal of Nuclear Medicine, 2015, 56, 1075-1078.	5.0	104
14	Biodistribution, Pharmacokinetics, and Dosimetry of ¹⁷⁷ Lu-, ⁹⁰ Y-, and ¹¹¹ In-Labeled Somatostatin Receptor Antagonist OPS201 in Comparison to the Agonist ¹⁷⁷ Lu-DOTATATE: The Mass Effect. Journal of Nuclear Medicine, 2017, 58, 1435-1441.	5.0	100
15	Evaluation of ¹⁷⁷ Lu-DOTA-sst ₂ Antagonist Versus ¹⁷⁷ Lu-DOTA-sst ₂ Agonist Binding in Human Cancers In Vitro. Journal of Nuclear Medicine, 2011, 52, 1886-1890.	5.0	96
16	Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: evaluation of diagnostic accuracy in a prospective crossover imaging study. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2318-2327.	6.4	82
17	Safety, Biodistribution, and Radiation Dosimetry of ⁶⁸ Ga-OPS202 in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase I Imaging Study. Journal of Nuclear Medicine, 2018, 59, 909-914.	5.0	65
18	High Expression of FAP in Colorectal Cancer Is Associated With Angiogenesis and Immunoregulation Processes. Frontiers in Oncology, 2020, 10, 979.	2.8	50

Melpomeni Fani

#	Article	IF	CITATIONS
19	In Vivo Imaging of Folate Receptor Positive Tumor Xenografts Using Novel ⁶⁸ Ga-NODAGA-Folate Conjugates. Molecular Pharmaceutics, 2012, 9, 1136-1145.	4.6	45
20	Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms. Pharmaceuticals, 2017, 10, 30.	3.8	44
21	Comprehensive evaluation of a somatostatin-based radiolabelled antagonist for diagnostic imaging and radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1876-1885.	6.4	43
22	Targeting of the Cholecystokinin-2 Receptor with the Minigastrin Analog ¹⁷⁷ Lu-DOTA-PP-F11N: Does the Use of Protease Inhibitors Further Improve In Vivo Distribution?. Journal of Nuclear Medicine, 2019, 60, 393-399.	5.0	42
23	New Developments in Peptide Receptor Radionuclide Therapy. Journal of Nuclear Medicine, 2019, 60, 167-171.	5.0	41
24	Development of new folate-based PET radiotracers: preclinical evaluation of 68Ga-DOTA-folate conjugates. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 108-119.	6.4	39
25	Radiolabeled Bicyclic Somatostatin-Based Analogs: A Novel Class of Potential Radiotracers for SPECT/PET of Neuroendocrine Tumors. Journal of Nuclear Medicine, 2010, 51, 1771-1779.	5.0	36
26	The somatostatin receptor 2 antagonist 64Cu-NODAGA-JR11 outperforms 64Cu-DOTA-TATE in a mouse xenograft model. PLoS ONE, 2018, 13, e0195802.	2.5	36
27	68Ga-Exendin-4 PET/CT Detects Insulinomas in Patients With Endogenous Hyperinsulinemic Hypoglycemia in MEN-1. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5843-5852.	3.6	36
28	Preoperative localization of adult nesidioblastosis using 68Ga-DOTA-exendin-4-PET/CT. Endocrine, 2015, 50, 821-823.	2.3	34
29	Theranostics in neuroendocrine tumors: an overview of current approaches and future challenges. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 581-594.	5.7	29
30	Radiolabeled Somatostatin Analogs—A Continuously Evolving Class of Radiopharmaceuticals. Cancers, 2022, 14, 1172.	3.7	27
31	Design and development of the theranostic pair ¹⁷⁷ Luâ€OPS201/ ⁶⁸ Gaâ€OPS202 for targeting somatostatin receptor expressing tumors. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 635-645.	1.0	20
32	The tetraamine chelator outperforms HYNIC in a new technetium-99m-labelled somatostatin receptor 2 antagonist. EJNMMI Research, 2018, 8, 75.	2.5	15
33	In Vivo Biokinetics of ¹⁷⁷ Lu-OPS201 in Mice and Pigs as a Model for Predicting Human Dosimetry. Contrast Media and Molecular Imaging, 2019, 2019, 1-7.	0.8	11
34	Distinct In Vitro Binding Profile of the Somatostatin Receptor Subtype 2 Antagonist [177Lu]Lu-OPS201 Compared to the Agonist [177Lu]Lu-DOTA-TATE. Pharmaceuticals, 2021, 14, 1265.	3.8	10
35	Glucagon-like Peptide-1 Receptor as Emerging Target: Will It Make It to the Clinic?. Journal of Nuclear Medicine, 2021, 62, 44S-50S.	5.0	8
36	Selection of the First 99mTc-Labelled Somatostatin Receptor Subtype 2 Antagonist for Clinical Translation—Preclinical Assessment of Two Optimized Candidates. Pharmaceuticals, 2021, 14, 19.	3.8	8

Melpomeni Fani

#	Article	IF	CITATIONS
37	Reply: Advantages and Limits of Targeted Radionuclide Therapy with Somatostatin Antagonists. Journal of Nuclear Medicine, 2018, 59, 547-548.	5.0	6
38	SPECT Imaging of SST2-Expressing Tumors with 99mTc-Based Somatostatin Receptor Antagonists: The Role of Tetraamine, HYNIC, and Spacers. Pharmaceuticals, 2021, 14, 300.	3.8	5
39	Radiolabeled Peptides for Cancer Imaging and Therapy: From Bench-to-Bedside. Chimia, 2021, 75, 500.	0.6	4
40	A new 68Ga-labeled somatostatin analog containing two iodo-amino acids for dual somatostatin receptor subtype 2 and 5 targeting. EJNMMI Research, 2020, 10, 90.	2.5	3
41	Evaluation of a New 177Lu-Labeled Somatostatin Analog for the Treatment of Tumors Expressing Somatostatin Receptor Subtypes 2 and 5. Molecules, 2020, 25, 4155.	3.8	2