Vincent Ranwez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6849577/publications.pdf

Version: 2024-02-01

114418 159525 4,763 66 30 63 citations h-index g-index papers 69 69 69 7065 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology, 2013, 10, 34.	0.9	955
2	MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons. PLoS ONE, 2011, 6, e22594.	1.1	546
3	MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Molecular Biology and Evolution, 2018, 35, 2582-2584.	3 . 5	330
4	Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes. Genome Research, 2010, 20, 1001-1009.	2.4	195
5	Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microtiâ€. Nucleic Acids Research, 2012, 40, 9102-9114.	6.5	179
6	GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends in Genetics, 2009, 25, 1-5.	2.9	167
7	Less Is More in Mammalian Phylogenomics: AT-Rich Genes Minimize Tree Conflicts and Unravel the Root of Placental Mammals. Molecular Biology and Evolution, 2013, 30, 2134-2144.	3.5	158
8	Referenceâ€free transcriptome assembly in nonâ€model animals from nextâ€generation sequencing data. Molecular Ecology Resources, 2012, 12, 834-845.	2.2	142
9	Multiple molecular evidences for a living mammalian fossil. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7495-7499.	3.3	141
10	Models, algorithms and programs for phylogeny reconciliation. Briefings in Bioinformatics, 2011, 12, 392-400.	3.2	132
11	Origin and Diversity of Plant Receptor-Like Kinases. Annual Review of Plant Biology, 2020, 71, 131-156.	8.6	130
12	OrthoMaM: A database of orthologous genomic markers for placental mammal phylogenetics. BMC Evolutionary Biology, 2007, 7, 241.	3.2	120
13	Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinformatics, 2006, 7, 188.	1.2	101
14	Quartet-Based Phylogenetic Inference: Improvements and Limits. Molecular Biology and Evolution, 2001, 18, 1103-1116.	3.5	93
15	Pervasive hybridizations in the history of wheat relatives. Science Advances, 2019, 5, eaav9188.	4.7	79
16	An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation with Losses, Duplications and Transfers. Lecture Notes in Computer Science, 2010, , 93-108.	1.0	78
17	OrthoMaM v8: A Database of Orthologous Exons and Coding Sequences for Comparative Genomics in Mammals. Molecular Biology and Evolution, 2014, 31, 1923-1928.	3.5	77
18	Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evolutionary Biology, 2011, 11, 181.	3.2	72

#	Article	IF	CITATIONS
19	OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and Exon Alignments with More than One Hundred Mammalian Genomes. Molecular Biology and Evolution, 2019, 36, 861-862.	3.5	64
20	Improvement of Distance-Based Phylogenetic Methods by a Local Maximum Likelihood Approach Using Triplets. Molecular Biology and Evolution, 2002, 19, 1952-1963.	3.5	63
21	Efficient Selection of Branch-Specific Models of Sequence Evolution. Molecular Biology and Evolution, 2012, 29, 1861-1874.	3.5	56
22	Genomic Evidence for Large, Long-Lived Ancestors to Placental Mammals. Molecular Biology and Evolution, 2013, 30, 5-13.	3.5	56
23	Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters, 2002, 23, 687-702.	2.6	52
24	S <scp>uper</scp> T <scp>riplets</scp> : a triplet-based supertree approach to phylogenomics. Bioinformatics, 2010, 26, i115-i123.	1.8	51
25	<i>Plant Defensin type $1 < i > (si > scp > PDF < scp > 1 < i > scp > 1 < i > scp > 1 < scp > 1$</i>	3.5	50
26	Pitfalls in supermatrix phylogenomics. European Journal of Taxonomy, 2017, , .	0.6	50
27	PhySIC: A Veto Supertree Method with Desirable Properties. Systematic Biology, 2007, 56, 798-817.	2.7	49
28	Fast and Robust Characterization of Time-Heterogeneous Sequence Evolutionary Processes Using Substitution Mapping. PLoS ONE, 2012, 7, e33852.	1.1	47
29	PhySIC_IST: cleaning source trees to infer more informative supertrees. BMC Bioinformatics, 2008, 9, 413.	1.2	42
30	REPRESENTING A SET OF RECONCILIATIONS IN A COMPACT WAY. Journal of Bioinformatics and Computational Biology, 2013, 11, 1250025.	0.3	41
31	Impact of recurrent gene duplication on adaptation of plant genomes. BMC Plant Biology, 2014, 14, 151.	1.6	32
32	Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat. PLoS ONE, 2016, 11, e0154609.	1.1	30
33	Inferring incomplete lineage sorting, duplications, transfers and losses with reconciliations. Journal of Theoretical Biology, 2017, 432, 1-13.	0.8	30
34	An information theoretic approach to improve semantic similarity assessments across multiple ontologies. Information Sciences, 2014, 283, 197-210.	4.0	27
35	User centered and ontology based information retrieval system for life sciences. BMC Bioinformatics, 2012, 13, S4.	1.2	26
36	Reconciliation and local gene tree rearrangement can be of mutual profit. Algorithms for Molecular Biology, 2013, 8, 12.	0.3	25

#	Article	IF	CITATIONS
37	Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack. Frontiers in Plant Science, 2014, 5, 70.	1.7	25
38	Support Measures to Estimate the Reliability of Evolutionary Events Predicted by Reconciliation Methods. PLoS ONE, 2013, 8, e73667.	1.1	22
39	Genotyping by sequencing transcriptomes in an evolutionary pre-breeding durum wheat population. Molecular Breeding, 2014, 34, 1531-1548.	1.0	20
40	The genetic map comparator: a user-friendly application to display and compare genetic maps. Bioinformatics, 2017, 33, 1387-1388.	1.8	17
41	PhyloExplorer: a web server to validate, explore and query phylogenetic trees. BMC Evolutionary Biology, 2009, 9, 108.	3.2	16
42	Building species trees from larger parts of phylogenomic databases. Information and Computation, 2011, 209, 590-605.	0.5	16
43	Disentangling homeologous contigs in allo-tetraploid assembly: application to durum wheat. BMC Bioinformatics, 2013, 14, S15.	1.2	13
44	Ontological Distance Measures for Information Visualisation on Conceptual Maps. Lecture Notes in Computer Science, 2006, , 1050-1061.	1.0	13
45	Aligning Protein-Coding Nucleotide Sequences with MACSE. Methods in Molecular Biology, 2021, 2231, 51-70.	0.4	11
46	How Ontology Based Information Retrieval Systems May Benefit from Lexical Text Analysis. Theory and Applications of Natural Language Processing, 2013, , 209-231.	0.3	10
47	A fast method for calculating reliable event supports in tree reconciliations via Pareto optimality. BMC Bioinformatics, 2015, 16, 384.	1,2	10
48	Domestication reduces alternative splicing expression variations in sorghum. PLoS ONE, 2017, 12, e0183454.	1.1	10
49	Accounting for Gene Tree Uncertainties Improves Gene Trees and Reconciliation Inference. Lecture Notes in Computer Science, 2012, , 123-134.	1.0	9
50	Exploring the space of gene/species reconciliations with transfers. Journal of Mathematical Biology, 2015, 71, 1179-1209.	0.8	9
51	Order Independent Homotopic Thinning. Lecture Notes in Computer Science, 1999, , 337-346.	1.0	9
52	From Gene Trees to Species Trees through a Supertree Approach. Lecture Notes in Computer Science, 2009, , 702-714.	1.0	9
53	Subontology Extraction Using Hyponym and Hypernym Closure on is-a Directed Acyclic Graphs. IEEE Transactions on Knowledge and Data Engineering, 2012, 24, 2288-2300.	4.0	8
54	Is diversity optimization always suitable? Toward a better understanding of diversity within recommendation approaches. Information Processing and Management, 2021, 58, 102721.	5.4	8

#	Article	IF	Citations
55	A new comprehensive annotation of leucineâ€rich repeatâ€containing receptors in rice. Plant Journal, 2021, 108, 492-508.	2.8	7
56	Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus. Theoretical and Applied Genetics, 2017, 130, 1491-1505.	1.8	6
57	Reconciliation-based detection of co-evolving gene families. BMC Bioinformatics, 2013, 14, 332.	1.2	4
58	USI: a fast and accurate approach for conceptual document annotation. BMC Bioinformatics, 2015, 16, 83.	1.2	4
59	Two Simple and Efficient Algorithms to Compute the SP-Score Objective Function of a Multiple Sequence Alignment. PLoS ONE, 2016, 11, e0160043.	1.1	4
60	Fast and reliable inference of semantic clusters. Knowledge-Based Systems, 2016, 111, 133-143.	4.0	3
61	Post-hoc recommendation explanations through an efficient exploitation of the DBpedia category hierarchy. Knowledge-Based Systems, 2022, 245, 108560.	4.0	3
62	Erratum to $\hat{a} \in \alpha GC$ -biased gene conversion promotes the fixation of deleterious amino acid changes in primates $\hat{a} \in B$ -[Trends in Genetics 25 (2009) $\hat{a} \in B$ -[Trends in Genetics, 2009, 25, 287.	2.9	2
63	Inferring gene duplications, transfers and losses can be done in a discrete framework. Journal of Mathematical Biology, 2016, 72, 1811-1844.	0.8	2
64	Evolution of flowering time in a selfing annual plant: Roles of adaptation and genetic drift. Ecology and Evolution, 2022, 12, e8555.	0.8	2
65	Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up pairwise genetic map comparison. PLoS ONE, 2018, 13, e0208838.	1.1	0
66	EBCR: Empirical Bayes concordance ratio method to improve similarity measurement in memory-based collaborative filtering. PLoS ONE, 2021, 16, e0255929.	1.1	0