Paulraj Arunkumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6849253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bimetallic Layered Hydroxide Nitrate@Graphene Oxide as an Electrocatalyst for Efficient Non-Enzymatic Glucose Sensors: Tuning Sensitivity by Hydroxide-Regulated M ₂ (OH) _{4–<i>n</i>} (A ^{<i>n</i>–}) Phases Derived from Solvent Engineering, ACS Sustainable Chemistry and Engineering, 2022, 10, 1689-1701.	3.2	18
2	Impact of an Incompatible Atomic Nickel-Incorporated Metal–Organic Framework on Phase Evolution and Electrocatalytic Activity of Ni-Doped Cobalt Phosphide for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 2975-2992.	2.5	17
3	Scanty graphene-driven phase control and heteroatom functionalization of ZIF-67-derived CoP-draped N-doped carbon/graphene as a hybrid electrode for high-performance asymmetric supercapacitor. Journal of Colloid and Interface Science, 2021, 582, 1136-1148.	5.0	41
4	Composition engineering of ZIF-derived cobalt phosphide/cobalt monoxide heterostructures for high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 588, 557-570.	5.0	40
5	A Complementary Coâ^'Ni Phosphide/Bimetallic Alloyâ€Interspersed Nâ€Doped Graphene Electrocatalyst for Overall Alkaline Water Splitting. ChemSusChem, 2021, 14, 1921-1935.	3.6	42
6	Self-Supportive Bimetallic Selenide Heteronanostructures as High-Efficiency Electro(pre)catalysts for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 13114-13123.	3.2	15
7	A hexagonal 2D ZIF-Co-L variant: Unusual role of graphene oxide on the water-regulated morphology of ZIF hybrid and their derived Co@N-doped carbon electrocatalyst for hydrogen evolution reaction. Chemical Engineering Journal, 2021, 426, 131270.	6.6	27
8	High performance, 3D-hierarchical CoS2/CoSe@C nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 838, 155537.	2.8	30
9	A nanosheet phosphor of double-layered perovskite with unusual intrananosheet site activator concentration. Chemical Engineering Journal, 2019, 375, 122044.	6.6	9
10	Mesoporous nitrogen-doped carbon@graphene nanosheets as ultra-stable anode for lithium-ion batteries – Melamine as surface modifier than nitrogen source. Electrochimica Acta, 2019, 318, 290-301.	2.6	29
11	Co3Se4 nanosheets embedded on N-CNT as an efficient electroactive material for hydrogen evolution and supercapacitor applications. Journal of Industrial and Engineering Chemistry, 2018, 65, 62-71.	2.9	47
12	Probing molecule-like isolated octahedra via phase stabilization of zero-dimensional cesium lead halide nanocrystals. Nature Communications, 2018, 9, 4691.	5.8	56
13	A Highly Effective, Stable Oxygen Evolution Catalyst Derived from Transition Metal Selenides and Phosphides. Particle and Particle Systems Characterization, 2018, 35, 1800135.	1.2	28
14	Hydrophobic Organic Skin as a Protective Shield for Moisture-Sensitive Phosphor-Based Optoelectronic Devices. ACS Applied Materials & Interfaces, 2017, 9, 7232-7240.	4.0	121
15	A zero-thermal-quenching phosphor. Nature Materials, 2017, 16, 543-550.	13.3	748
16	High capacity spinel@layered Li1.5MnTiO4+ as thermally stable core-shell-driven cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 704, 459-468.	2.8	13
17	Engineering the Lattice Site Occupancy of Apatite-Structure Phosphors for Effective Broad-Band Emission through Cation Pairing. Inorganic Chemistry, 2017, 56, 5696-5703.	1.9	16
18	High-performance spinel-rich Li1.5MnTiO4+δultralong nanofibers as cathode materials for Li-ion batteries. Scientific Reports, 2017, 7, 45579.	1.6	16

#	Article	IF	CITATIONS
19	Effects of excess Li on the structure and electrochemical performance of Li 1+z MnTiO 4+ δ cathode for Li-ion batteries. Electrochimica Acta, 2017, 225, 458-466.	2.6	17
20	Colloidal Organolead Halide Perovskite with a High Mn Solubility Limit: A Step Toward Pb-Free Luminescent Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 4161-4166.	2.1	90
21	A Phosphosilicate Compound, NaCa ₃ PSiO ₈ : Structure Solution and Luminescence Properties. Inorganic Chemistry, 2017, 56, 15130-15137.	1.9	6
22	Effect of synthesis temperature on the structural defects of integrated spinel-layered Li _{1.2} Mn _{0.75} Ni _{0.25} O _{2+δ} : a strategy to develop high-capacity cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 15730-15742.	5.2	20
23	Structural and Optical Properties of Yellow-Emitting CaGd2ZrSc(AlO4)3:Ce3+ Phosphor for Solid-State Lighting. Journal of the Korean Ceramic Society, 2017, 54, 422-428.	1.1	2
24	Improved electrochemical reversibility of over-lithiated layered Li 2 RuO 3 cathodes: Understanding aliovalent Co 3+ substitution with excess lithium. Journal of Power Sources, 2016, 324, 428-438.	4.0	30
25	Versatile Ca ₄ F ₂ Si ₂ O ₇ Host from Defect-Induced Host Emission to White-Light-Emitting Ce ³⁺ -Doped Ca ₄ F ₂ Si ₂ O ₇ Phosphor for Near-UV Solid-State Lighting, Journal of Physical Chemistry C, 2016, 120, 4495-4503.	1.5	32
26	Influence of Ti ⁴⁺ on the Electrochemical Performance of Li-Rich Layered Oxides - High Power and Long Cycle Life of Li ₂ Ru _{1â€"<i>x</i>} Ti _{<i>x</i>} O ₃ Cathodes. ACS Applied Materials & Amp: Interfaces. 2015. 7. 7118-7128.	4.0	34
27	TiNb2O7/Graphene hybrid material as high performance anode for lithium-ion batteries. Electrochimica Acta, 2015, 176, 285-292.	2.6	99
28	Nb ₂ O ₅ /graphene nanocomposites for electrochemical energy storage. RSC Advances, 2015, 5, 59997-60004.	1.7	63
29	Facile fabrication of moisture resistance and thermally stable SrGa2S4:Eu2+ phosphor-in-glass microcubes for white LED. Ceramics International, 2015, 41, 5200-5204.	2.3	25
30	White light emission in alkali metal ion co-doped single host lattice phosphor Sr3B2O6:Ce3+,Eu2+,A+ [A=Li, Na and K]. Ceramics International, 2015, 41, 3497-3501.	2.3	16
31	Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 193, 4-12.	1.7	18
32	A New Blue-Emitting Oxohalide Phosphor Sr ₄ OCl ₆ :Eu ²⁺ for Thermally Stable, Efficient White-Light-Emitting Devices under Near-UV. Journal of Physical Chemistry C, 2014, 118, 2686-2692.	1.5	118
33	Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices. Optics Letters, 2014, 39, 762.	1.7	94
34	Structure–property relations in hexagonal and monoclinic BiPO ₄ :Eu ³⁺ nanoparticles synthesized by polyol-mediated method. RSC Advances, 2012, 2, 1477-1485.	1.7	61
35	Photoluminescence Efficiencies of Nanocrystalline versus Bulk Y2O3: Eu Phosphor-Revisited. Journal of the American Ceramic Society, 2011, 94, 1627-1633.	1.9	25
36	Reply to the Comment on "Photoluminescence Efficiencies of Nanocrystalline Versus Bulk Y2O3:Eu Phosphor-Revisited― Journal of the American Ceramic Society, 2011, 94, 2696-2697.	1.9	0

#	Article	IF	CITATIONS
37	Preparation of catalytic films of platinum on Au substrates modified by self-assembled PAMAM dendrimer monolayers. Applied Catalysis B: Environmental, 2009, 88, 557-563.	10.8	10
38	Self-Assembled Monolayers As Nucleating Centers for the Preparation of Multilayers of Catalytically Active Pt Films. Journal of Physical Chemistry C, 2009, 113, 8378-8386.	1.5	8