Donatella Tramontano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6849225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Go for it! Exercising makes you happy and strong Translational Medicine @ UniSa, 2021, 23, 92-105.	0.8	2
2	Rethinking palliative care in a public health context: addressing the needs of persons with non-communicable chronic diseases. Primary Health Care Research and Development, 2020, 21, e32.	0.5	17
3	Participation to Leisure Activities and Well-Being in a Group of Residents of Naples-Italy: The Role of Resilience. International Journal of Environmental Research and Public Health, 2020, 17, 1895.	1.2	11
4	Effects of Long-Term Citrate Treatment in the PC3 Prostate Cancer Cell Line. International Journal of Molecular Sciences, 2019, 20, 2613.	1.8	18
5	Creating a Culture of Health in Planning and Implementing Innovative Strategies Addressing Non-communicable Chronic Diseases. Frontiers in Sociology, 2019, 4, 9.	1.0	10
6	Positive selection in Europeans and East-Asians at the ABCA12 gene. Scientific Reports, 2019, 9, 4843.	1.6	1
7	Is the secret for a successful aging to keep track of cancer pathways?. Journal of Cellular Physiology, 2018, 233, 8467-8476.	2.0	6
8	High mobility group A1 protein modulates autophagy in cancer cells. Cell Death and Differentiation, 2017, 24, 1948-1962.	5.0	39
9	Building bridges for innovation in ageing: Synergies between action groups of the EIP on AHA. Journal of Nutrition, Health and Aging, 2017, 21, 92-104.	1.5	47
10	The Impact of Social and Cultural Engagement and Dieting on Well-Being and Resilience in a Group of Residents in the Metropolitan Area of Naples. Journal of Aging Research, 2016, 2016, 1-11.	0.4	23
11	Convergent Effects of Resveratrol and PYK2 on Prostate Cells. International Journal of Molecular Sciences, 2016, 17, 1542.	1.8	16
12	The Proteomic Landscape of Human ExÂVivo Regulatory and Conventional T Cells Reveals Specific Metabolic Requirements. Immunity, 2016, 44, 406-421.	6.6	201
13	Ligand activated progesterone receptor B drives autophagy-senescence transition through a Beclin-1/Bcl-2 dependent mechanism in human breast cancer cells. Oncotarget, 2016, 7, 57955-57969.	0.8	20
14	In vitro mechanism for downregulation of <scp>ER</scp> â€î± expression by epigallocatechin gallate in <scp>ER</scp> +/ <scp>PR</scp> + human breast cancer cells. Molecular Nutrition and Food Research, 2013, 57, 840-853.	1.5	52
15	Epigallocatechin gallate inhibits growth and epithelialâ€toâ€mesenchymal transition in human thyroid carcinoma cell lines. Journal of Cellular Physiology, 2013, 228, 2054-2062.	2.0	45
16	Resveratrol Couples Apoptosis with Autophagy in UVB-Irradiated HaCaT Cells. PLoS ONE, 2013, 8, e80728.	1.1	56
17	Resveratrol, through NF‥/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor α gene expression <i>via</i> p38 ^{MAPK} /CK2 signaling in human breast cancer cells. FASEB Journal, 2011, 25, 3695-3707.	0.2	66
18	First evidences that Resveratrol through p53/Sin3/HDAC1 complex phosphorylation inhibits ESR1 gene expression via p38MAPK signalling FASEB Journal, 2011, 25, .	0.2	0

Donatella Tramontano

#	Article	IF	CITATIONS
19	Resveratrol regulates p66Shc activation in HaCaT cells. Experimental Dermatology, 2010, 19, 895-903.	1.4	19
20	cAMP and Pyk2 interact to regulate prostate cells proliferation and function. Cancer Biology and Therapy, 2009, 8, 236-242.	1.5	3
21	Overexpression of chromatin assembly factorâ€1 (CAFâ€1) p60 is predictive of adverse behaviour of prostatic cancer. Histopathology, 2009, 54, 580-589.	1.6	44
22	The dietary antioxidant resveratrol affects redox changes of PPARα activity. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17, 247-256.	1.1	25
23	Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate, 2006, 66, 326-333.	1.2	138
24	Loss of proline-rich tyrosine kinase 2 function induces spreading and motility of epithelial prostate cells. Journal of Cellular Physiology, 2006, 209, 74-80.	2.0	24
25	The Endocrine-Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF)/Prokineticin 1 and 2 and Receptor Expression in Human Prostate: Up-Regulation of EG-VEGF/Prokineticin 1 with Malignancy. Endocrinology, 2006, 147, 4245-4251.	1.4	70
26	cAMP induced modifications of HOX D gene expression in prostate cells allow the identification of a chromosomal area involved in vivo with neuroendocrine differentiation of human advanced prostate cancers. Journal of Cellular Physiology, 2005, 205, 202-210.	2.0	27
27	Aurora B expression in normal testis and seminomas. Journal of Endocrinology, 2004, 181, 263-270.	1.2	83
28	The Oncogenic Activity of RET Point Mutants for Follicular Thyroid Cells May Account for the Occurrence of Papillary Thyroid Carcinoma in Patients Affected by Familial Medullary Thyroid Carcinoma. American Journal of Pathology, 2004, 165, 511-521.	1.9	35
29	Prolin-rich tyrosine kinase 2 (PYK2) expression and localization in mouse testis. Molecular Reproduction and Development, 2003, 65, 330-335.	1.0	16
30	17β-estradiol-induced activation of ERK1/2 through endogenous androgen receptor-estradiol receptor α-Src complex in human prostate cells. International Journal of Oncology, 2003, 23, 797.	1.4	2
31	Proline-rich tyrosine kinase 2 regulates proliferation and differentiation of prostate cells. Molecular and Cellular Endocrinology, 2002, 186, 81-87.	1.6	39
32	EPN: A NOVEL EPITHELIAL CELL LINE DERIVED FROM HUMAN PROSTATE TISSUE. In Vitro Cellular and Developmental Biology - Animal, 2002, 38, 165.	0.7	36
33	HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene, 2002, 21, 3644-3650.	2.6	98
34	Annual profile of mitogen-activated protein kinase (extracellular signalregulated kinase 1 and 2) in the frog(Rana esculenta) testis. Rendiconti Lincei, 2001, 12, 19-28.	1.0	2
35	Expression of the Apoptosis Inhibitor Survivin in Aggressive Squamous Cell Carcinoma. Experimental and Molecular Pathology, 2001, 70, 249-254.	0.9	423
36	Variations of Proline-Rich Kinase Pyk2 Expression Correlate with Prostate Cancer Progression. Laboratory Investigation, 2001, 81, 51-59.	1.7	49

#	Article	IF	CITATIONS
37	RET/PTC1 oncogene signaling in PC Cl 3 thyroid cells requires the small GTP-binding protein Rho. Oncogene, 2001, 20, 6973-6982.	2.6	45
38	Hypericin photosensitization of tumor and metastatic cell lines of human prostate. Journal of Photochemistry and Photobiology B: Biology, 2000, 54, 103-107.	1.7	42
39	Association between the expression of E1A oncogene and increased sensitivity to growth inhibition induced by sustained levels of cAMP in rat thyroid cells. European Journal of Endocrinology, 2000, 142, 286-293.	1.9	4
40	Estradiol-induced mitogen-activated protein kinase (extracellular signal-regulated kinase 1 and 2) activity in the frog (Rana esculenta) testis. Journal of Endocrinology, 2000, 167, 77-84.	1.2	50
41	Hypertensive left ventricular remodeling and ACE-gene polymorphism. Cardiovascular Research, 1999, 43, 192-199.	1.8	27
42	C-Jun phosphorylation (Ser-63) in the testis of the lizard, Podarcis s. sicula. Journal of Endocrinology, 1999, 163, 337-344.	1.2	8
43	Endogenous insulin-like growth factors regulate the proliferation of TSH-independent mutants derived from FRTL5 cells. Biochimie, 1999, 81, 367-371.	1.3	4
44	Thyroid Cell Transformation Inhibits the Expression of a Novel Rat Protein Tyrosine Phosphatase. Experimental Cell Research, 1997, 235, 62-70.	1.2	52
45	Deletion Polymorphism of Angiotensin-Converting Enzyme Gene and Left Ventricular Hypertrophy in Southern Italian Patients. Journal of the American College of Cardiology, 1997, 29, 365-369.	1.2	58
46	About thyroid cells in culture. Journal of Endocrinological Investigation, 1994, 17, 875-890.	1.8	0
47	In the thyroid cells proliferation, differentiated and metabolic functions are under the control of different steps of the cyclic AMP cascade. Molecular and Cellular Endocrinology, 1993, 95, 85-93.	1.6	6
48	Transfected insulin-like growth factor II modulates the mitogenic response of rat thyrocytes in culture. Molecular and Cellular Endocrinology, 1992, 86, 11-20.	1.6	8
49	The FRTL-5 System. Thyroid, 1990, 1, 91-95.	2.4	2
50	The tissue-specific pathways regulating cell proliferation are inherited independently in somatic hybrid between thyroid and liver cells Journal of Cell Biology, 1990, 111, 2703-2711.	2.3	6
51	Transferrin in FRTL5 Cells: Regulation of Its Receptor by Mitogenic Agents and Its Role in Growth*. Endocrinology, 1989, 125, 652-658.	1.4	10
52	Multiple Factors Influence Insulin-Like Growth Factor-I Binding to Human Skin Fibroblasts*. Endocrinology, 1989, 125, 867-875.	1.4	3
53	Iodine Inhibits the Proliferation of Rat Thyroid Cells in Culture*. Endocrinology, 1989, 125, 984-992.	1.4	42
54	Adenosine Has Divergent Effects on Deoxyribonucleic Acid Synthesis in FRTL5 Cells: Inhibition of Thyrotropin-Stimulated and Potentiation of Insulin-Like Growth Factor-I-Stimulated Thymidine Incorporation*. Endocrinology, 1989, 125, 2758-2765.	1.4	18

#	Article	IF	CITATIONS
55	Interactions of Insulin-Like Growth Factor-I (IGF-I) with Multiple Signal Transduction Pathways in FRTL5 Thyroid Follicular Cells. , 1989, , 485-493.		0
56	Adenosine 3′,5′-Monophosphate Mediates Both the Mitogenic Effect of Thyrotropin and Its Ability to Amplify the Response to Insulin-Like Growth Factor I in FRTL5 Cells*. Endocrinology, 1988, 122, 127-132.	1.4	151
57	The Role of Adenosine 3′,5′-Monophosphate in the Regulation of Receptors for Thyrotropin and Insulin-Like Growth Factor I in the FRTL5 Rat Thyroid Follicular Cell*. Endocrinology, 1988, 122, 133-136.	1.4	44
58	Independent and Interactive Effects of Tetradecanoyl Phorbol Acetate on Growth and Differentiated Functions of FRTL5 Cells*. Endocrinology, 1988, 123, 1544-1552.	1.4	60
59	Effects of Rat γ- and Non-γ-Interferons on the Expression of la Antigen, Growth, and Differentiated Functions of FRTL5 Cells*. Endocrinology, 1988, 123, 2849-2857.	1.4	37
60	Supranormal Stimulation of Deoxyribonucleic Acid Synthesis in FRTL5 Cells by Serum from Patients With Untreated Acromegaly*. Journal of Clinical Endocrinology and Metabolism, 1988, 66, 1227-1232.	1.8	23
61	Demonstration of the production and physiological role of insulin-like growth factor II in rat thyroid follicular cells in culture Journal of Clinical Investigation, 1988, 82, 1546-1553.	3.9	79
62	The Carbohydrate Moiety of Bovine Thyrotropin Is Essential for Full Bioactivity but Not for Receptor Recognition*. Endocrinology, 1987, 120, 345-352.	1.4	37
63	INTERLEUKIN-1 STIMULATES THYROID CELL GROWTH AND INCREASES THE CONCENTRATION OF THE c-myc PROTO-ONCOGENE mRNA IN THYROID FOLLICULAR CELLS IN CULTURE. Endocrinology, 1987, 120, 1212-1214.	1.4	60
64	Regulation of Growth of Thyroid Cells in Culture by TSH Receptor Antibodies and Other Humoral Factors. , 1987, , 363-365.		0
65	INSULIN-LIKE GROWTH FACTOR-I STIMULATES THE GROWTH OF RAT THYROID CELLS IN CULTURE AND SYNERGIZES THE STIMULATION OF DNA SYNTHESIS INDUCED BY TSH AND GRAVESâ€2-IgG. Endocrinology, 1986, 119, 940-942.	1.4	305
66	Thyrotropin-Independent Mutant Clones from FRTL5 Rat Thyroid Cells: Hormonal Control Mechanisms in Differentiated Cells*. Endocrinology, 1986, 118, 862-868.	1.4	25
67	Properties and Regulation of the Thyrotropin Receptor in the FRTL5 Rat Thyroid Cell Line*. Endocrinology, 1986, 118, 1945-1951.	1.4	75
68	Differential expression of thyroglobulin gene in normal and transformed thyroid cells. FEBS Journal, 1985, 149, 467-472.	0.2	22
69	Alteration of Erythrocyte Membrane Lipid Fluidity in Human Obesity. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 1226-1230.	1.8	24
70	Suspension culture reveals a morphogenetic property of a thyroid epithelial cell line. Experimental Cell Research, 1984, 152, 22-30.	1.2	9
71	The level of thyroglobulin mRNA is regulated by TSH both in vitro and in vivo. Biochemical and Biophysical Research Communications, 1984, 122, 472-477.	1.0	70
72	The Relationship of Growth and Adenylate Cyclase Activity in Cultured Thyroid Cells: Separate Bioeffects of Thyrotropin. Endocrinology, 1983, 112, 71-79.	1.4	223

#	Article	IF	CITATIONS
73	Direct visualization of membrane clustering and endocytosis of thyrotropin into cultured thyroid cells. Molecular and Cellular Endocrinology, 1982, 25, 55-71.	1.6	24
74	Thyrotropin induces changes in the morphology and the organization of microfilament structures in cultured thyroid cells. Experimental Cell Research, 1982, 137, 269-275.	1.2	52
75	Thyroglobulin Production by Rat Thyroid Cells in Culture: A Study at the Level of Single Cells. Endocrinology, 1982, 110, 1790-1795.	1.4	9
76	Antitumoral action of bovine seminal ribonuclease. Molecular and Cellular Biochemistry, 1981, 36, 125-128.	1.4	23
77	Adenosine 3',5'-monophosphate modulates thyrotropin receptor clustering and thyrotropin activity in culture. Science, 1981, 214, 1237-1239.	6.0	34
78	A cell membrane alteration specifically induced by SV40 transformation. Journal of Cellular Physiology, 1977, 92, 265-274.	2.0	8