
Yuji Kajiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6849133/publications.pdf Version: 2024-02-01

Υπη Κνηνηνα

#	Article	IF	CITATIONS
1	Phenotypic and genotypic characterization of families with complex intellectual disability identified pathogenic genetic variations in known and novel disease genes. Scientific Reports, 2020, 10, 968.	1.6	8
2	Intestinal dysmotility in a zebrafish (Danio rerio) shank3a;shank3b mutant model of autism. Molecular Autism, 2019, 10, 3.	2.6	55
3	Presenilin1/γâ€secretase protects neurons from glucose deprivationâ€induced death by regulating miRâ€212 and PEA15. FASEB Journal, 2018, 32, 243-253.	0.2	10
4	cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine, 2018, 24, 50-61.	15.2	205
5	Behavioral Phenotyping of an Improved Mouse Model of Phelan–McDermid Syndrome with a Complete Deletion of the <i>Shank3</i> Gene. ENeuro, 2018, 5, ENEURO.0046-18.2018.	0.9	79
6	GJA1 (connexin43) is a key regulator of Alzheimer's disease pathogenesis. Acta Neuropathologica Communications, 2018, 6, 144.	2.4	59
7	The human-specific <i>CASP4</i> gene product contributes to Alzheimer-related synaptic and behavioural deficits. Human Molecular Genetics, 2016, 25, 4315-4327.	1.4	21
8	Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease. Genome Medicine, 2016, 8, 104.	3.6	224
9	Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators. Cell Reports, 2015, 11, 1400-1413.	2.9	245
10	Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID. Molecular Autism, 2015, 6, 23.	2.6	68
11	Presenilin 1 is necessary for neuronal, but not glial, EGFR expression and neuroprotectionvial ³ -secretase-independent transcriptional mechanisms. FASEB Journal, 2015, 29, 3702-3712.	0.2	17
12	Canonical Inflammasomes Drive IFN-Î ³ to Prime Caspase-11 in Defense against a Cytosol-Invasive Bacterium. Cell Host and Microbe, 2015, 18, 320-332.	5.1	101
13	A Critical Role for Human Caspase-4 in Endotoxin Sensitivity. Journal of Immunology, 2014, 193, 335-343.	0.4	95
14	Compound heterozygous PNPLA6 mutations cause Boucher–Neuhäser syndrome with late-onset ataxia. Journal of Neurology, 2014, 261, 2411-2423.	1.8	30
15	Identification of Small Exonic CNV from Whole-Exome Sequence Data and Application to Autism Spectrum Disorder. American Journal of Human Genetics, 2013, 93, 607-619.	2.6	136
16	Characterization of SLITRK1 Variation in Obsessive-Compulsive Disorder. PLoS ONE, 2013, 8, e70376.	1.1	47
17	Analysis of a purported SHANK3 mutation in a boy with autism: Clinical impact of rare variant research in neurodevelopmental disabilities. Brain Research, 2011, 1380, 98-105.	1.1	28
18	Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease. Molecular Neurodegeneration, 2010, 5, 1.	4.4	51

Yuji Kajiwara

#	Article	IF	CITATIONS
19	Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Molecular Autism, 2010, 1, 15.	2.6	521
20	FE65 Binds Teashirt, Inhibiting Expression of the Primate-Specific Caspase-4. PLoS ONE, 2009, 4, e5071.	1.1	33
21	SLITRK1 Binds 14-3-3 and Regulates Neurite Outgrowth in a Phosphorylation-Dependent Manner. Biological Psychiatry, 2009, 66, 918-925.	0.7	58
22	Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Molecular Psychiatry, 2008, 13, 162-172.	4.1	73
23	Calsenilin interacts with transcriptional co-repressor C-terminal binding protein(s). Journal of Neurochemistry, 2006, 98, 1290-1301.	2.1	24
24	The bZIP-like motif of hnRNP C directs the nuclear accumulation of pre-mRNA and lethality in yeast. Journal of Molecular Biology, 2001, 305, 829-838.	2.0	11