
Akshay Subramaniam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6848616/publications.pdf Version: 2024-02-01

AKSHAV SURDAMANIAM

#	Article	IF	CITATIONS
1	Modeling the Cooperative Adsorption of Solid-Binding Proteins on Silica: Molecular Insights from Surface Plasmon Resonance Measurements. Langmuir, 2019, 35, 5013-5020.	3.5	20
2	Properly Lumped Lithium-ion Battery Models: A Tanks-in-Series Approach. Journal of the Electrochemical Society, 2020, 167, 013534.	2.9	13
3	Analysis and Simulation of One-Dimensional Transport Models for Lithium Symmetric Cells. Journal of the Electrochemical Society, 2019, 166, A3806-A3819.	2.9	12
4	Editors' Choice—Perspective—Challenges in Moving to Multiscale Battery Models: Where Electrochemistry Meets and Demands More from Math. Journal of the Electrochemical Society, 2020, 167, 133501.	2.9	12
5	An Efficient Electrochemical Tanks-in-Series Model for Lithium Sulfur Batteries. Journal of the Electrochemical Society, 2020, 167, 163503.	2.9	11
6	Realigning the Chemistry and Parameterization of Lithium‣ulfur Battery Models to Accommodate Emerging Experimental Evidence and Cell Configurations. ChemElectroChem, 2021, 8, 1098-1106.	3.4	7
7	Can a Transport Model Predict Inverse Signatures in Lithium Metal Batteries Without Modifying Kinetics?. Journal of the Electrochemical Society, 2020, 167, 160547.	2.9	7
8	Perspective—Mass Conservation in Models for Electrodeposition/Stripping in Lithium Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 092502.	2.9	6
9	An Efficient Electrochemical-Thermal Tanks-in-Series Model for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 113506.	2.9	5
10	Towards Real-Time Simulation of Two-Dimensional Models for Electrodeposition/Stripping in Lithium-Metal Batteries. ECS Transactions, 2021, 104, 131-152.	0.5	4
11	A Tanks-in-Series Approach to Estimate Parameters for Lithium-Ion Battery Models. Journal of the Electrochemical Society, 2022, 169, 050525.	2.9	4
12	(Invited) The Relevance (irrelevance) and Elegance(inelegance) of Electroneutrality – the Interplay between Physics and Computational Efficiency. ECS Meeting Abstracts, 2018, , .	0.0	1
13	Robust 2D Simulation of Morphological Evolution in Lithium-Metal Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 985-985.	0.0	0
14	Incorporating Improved Chemical and Electrochemical Reaction Schemes in Electrochemical Engineering Models for Lithium Sulfur Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 337-337.	0.0	0
15	Estimation of Grouped Parameters Using Tanks-in-Series Lithium-Ion Battery Model. ECS Meeting Abstracts, 2021, MA2021-01, 989-989.	0.0	0
16	(Industrial Electrochemistry and Electrochemical Engineering Division H. H. Dow Memorial Student) Tj ETQq0 0 0 Design, Control, and Multiscale Simulations. ECS Meeting Abstracts, 2021, MA2021-01, 987-987.	rgBT /Ove 0.0	erlock 10 Tf 5 O
17	Modeling the Voltage Response of Lithium Symmetric Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
	Numerical Analysis of Electrochemical Engineering Models for Lithium Sulfur Batteries, ECS Meeting		

¹⁸Numerical Analysis of Electrochemical Engineering Models for Lithium Sulfur Batteries. ECS Meeting
Abstracts, 2018, , .0.00

#	Article	IF	CITATIONS
19	Efficient Simulation of Novel Electrode Architectures. ECS Meeting Abstracts, 2018, , .	0.0	Ο
20	Modeling Lithium Growth in Symmetric Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
21	Model - Based Design and Control of Lead-Acid Batteries: Is There Any More Juice Left in a System That Is 158 Years Old?. ECS Meeting Abstracts, 2018, , .	0.0	Ο
22	A Tanks-in-Series Electrochemical Engineering Model for Lithium Sulfur Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
23	A Coupled Tank-in-Series Electrochemical Engineering and Thermal Model for Lithium Sulfur Batteries. ECS Meeting Abstracts, 2019, , .	0.0	Ο
24	(Invited) Multiscale Stress-Transport-Kinetics Continuum Models for Lithium-Metal Batteries-Relevance of Richard Alkire's Electrodeposition Legacy for Next-Generation Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
25	Electrochemical-Thermal Tanks-in-Series Models for Lithium-Ion Batteries. ECS Meeting Abstracts, 2019,	0.0	0
26	A Mass and Charge Conserving Tanks-in-series Model for Lithium-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
27	Electrochemical Modeling and Simulation of a Three-Electrode Lead Acid Cell. ECS Meeting Abstracts, 2019, , .	0.0	0
28	Coupled Tank-in-Series Electrochemical-Thermal Model for Lithium Sulfur Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 167-167.	0.0	0
29	Importance of Various Thermal Effects in Battery Modeling. ECS Meeting Abstracts, 2020, MA2020-01, 130-130.	0.0	0
30	Real-Time Parameter Estimation of Lithium-Ion Battery Models Using a Novel Tanks-in-Series Approach. ECS Meeting Abstracts, 2020, MA2020-01, 129-129.	0.0	0
31	A Simple One-Dimensional Transport Model to Explain Inverse Signatures in Lithium-Metal Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 305-305.	0.0	0
32	A Coupled Electrochemical-Mechanical Pressure Model for Lithium Metal Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 284-284.	0.0	0
33	A Model for Temperature-Dependent Degradation in Lithium-Ion Batteries: Correlating Electrochemical Phenomena with Cell-Level Performance Parameters. ECS Meeting Abstracts, 2021, MA2021-02, 419-419.	0.0	0
34	A Coupled Tank-in-Series Electrochemical-Thermal Model for Lithium Sulfur Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 1595-1595.	0.0	0
35	Challenges in Moving to Multiscale Battery Models - Where Electrochemistrymeets and demands more from Math. ECS Meeting Abstracts, 2020, MA2020-02, 1604-1604.	0.0	0
36	Parameter Estimation of Lithium-Ion Battery Models Using a Novel Tanks-in-Series Approach. ECS Meeting Abstracts, 2020, MA2020-02, 1548-1548.	0.0	0

#	Article	IF	CITATIONS
37	A Simple One-Dimensional Transport Model to Explain Inverse Signatures in Lithium-Metal Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 514-514.	0.0	Ο
38	Towards Real-Time Simulation of Two-Dimensional Models for Electrodeposition/Stripping in Lithium-Metal Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 176-176.	0.0	0