Devakar R Epari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6848598/publications.pdf Version: 2024-02-01

DEVAKAD P FOADI

#	Article	IF	CITATIONS
1	Morphology of bony callus growth in healing of a sheep tibial osteotomy. Injury, 2021, 52, 66-70.	1.7	1
2	Biphasic plating improves the mechanical performance of locked plating for distal femur fractures. Journal of Biomechanics, 2021, 115, 110192.	2.1	15
3	Can Optimizing the Mechanical Environment Deliver a Clinically Significant Reduction in Fracture Healing Time?. Biomedicines, 2021, 9, 691.	3.2	10
4	Short-Term Bone Healing Response to Mechanical Stimulation—A Case Series Conducted on Sheep. Biomedicines, 2021, 9, 988.	3.2	5
5	Scaffold-guided bone regeneration in large volume tibial segmental defects. Bone, 2021, 153, 116163.	2.9	29
6	Programable Active Fixator System for Systematic In Vivo Investigation of Bone Healing Processes. Sensors, 2021, 21, 17.	3.8	7
7	Development of Surgical Tools and Procedures for Experimental Preclinical Surgery Using Computer Simulations And 3D Printing. International Journal of Online and Biomedical Engineering, 2020, 16, 183.	1.4	3
8	Biphasic Plating – In vivo study of a novel fixation concept to enhance mechanobiological fracture healing. Injury, 2020, 51, 1751-1758.	1.7	9
9	Early mechanical stimulation only permits timely bone healing in sheep. Journal of Orthopaedic Research, 2018, 36, 1790-1796.	2.3	30
10	Computational simulation of bone fracture healing under inverse dynamisation. Biomechanics and Modeling in Mechanobiology, 2017, 16, 5-14.	2.8	12
11	A cadaveric biomechanical study comparing the ease of femoral nail insertion: 1.0- vs 1.5-m bow designs. Archives of Orthopaedic and Trauma Surgery, 2017, 137, 663-671.	2.4	10
12	Risk Factors for Knee Injury in Golf: A Systematic Review. Sports Medicine, 2017, 47, 2621-2639.	6.5	17
13	Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 88, 217-222.	3.3	45
14	Monitoring Healing Progression and Characterizing the Mechanical Environment in Preclinical Models for Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 47-57.	4.8	15
15	Mechanical testing of internal fixation devices: A theoretical and practical examination of current methods. Journal of Biomechanics, 2015, 48, 3989-3994.	2.1	11
16	Effects of strain artefacts arising from a pre-defined callus domain in models of bone healing mechanobiology. Biomechanics and Modeling in Mechanobiology, 2015, 14, 1129-1141.	2.8	11
17	Mechanical tension as a driver of connective tissue growth in vitro. Medical Hypotheses, 2014, 83, 111-115.	1.5	5
18	Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone. Medical Engineering and Physics, 2014, 36, 869-874.	1.7	14

Devakar R Epari

#	Article	IF	CITATIONS
19	Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomaterialia, 2013, 9, 7874-7884.	8.3	90
20	Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials, 2013, 34, 9960-9968.	11.4	120
21	A case for optimising fracture healing through inverse dynamization. Medical Hypotheses, 2013, 81, 225-227.	1.5	23
22	Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Research, 2013, 1, 216-248.	11.4	625
23	A Tissue Engineering Solution for Segmental Defect Regeneration in Load-Bearing Long Bones. Science Translational Medicine, 2012, 4, 141ra93.	12.4	301
24	Can the contra-lateral limb be used as a control with respect to analyses of bone remodelling?. Medical Engineering and Physics, 2011, 33, 987-992.	1.7	2
25	The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: A finite element study based on sheep experiments. Journal of Biomechanics, 2011, 44, 517-523.	2.1	28
26	Establishment of a Preclinical Ovine Model for Tibial Segmental Bone Defect Repair by Applying Bone Tissue Engineering Strategies. Tissue Engineering - Part B: Reviews, 2010, 16, 93-104.	4.8	76
27	A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge. Injury, 2010, 41, S14-S15.	1.7	0
28	Size and habit of mineral particles in bone and mineralized callus during bone healing in sheep. Journal of Bone and Mineral Research, 2010, 25, 2029-2038.	2.8	61
29	Temporal tissue patterns in bone healing of sheep. Journal of Orthopaedic Research, 2010, 28, 1440-1447.	2.3	36
30	A new approach for assigning bone material properties from CT images into finite element models. Journal of Biomechanics, 2010, 43, 1011-1015.	2.1	75
31	<i>In vitro</i> models for bone mechanobiology: Applications in bone regeneration and tissue engineering. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1533-1541.	1.8	13
32	Mechanobiology of bone healing and regeneration: <i>in vivo</i> models. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1543-1553.	1.8	67
33	The challenge of establishing preclinical models for segmental bone defect research. Biomaterials, 2009, 30, 2149-2163.	11.4	351
34	Biaxial cell stimulation: A mechanical validation. Journal of Biomechanics, 2009, 42, 1692-1696.	2.1	39
35	Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone, 2009, 45, 185-192.	2.9	114
36	Pressure, oxygen tension and temperature in the periosteal callus during bone healing—An in vivo study in sheep. Bone, 2008, 43, 734-739.	2.9	55

Devakar R Epari

#	Article	IF	CITATIONS
37	Influence of Scaffold Stiffness on Subchondral Bone and Subsequent Cartilage Regeneration in an Ovine Model of Osteochondral Defect Healing. American Journal of Sports Medicine, 2008, 36, 2379-2391.	4.2	78
38	Mechanical evaluation of a new minimally invasive device for stabilization of proximal humeral fractures in elderly patients A cadaver study. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 78, 430-435.	3.3	23
39	Mechanical Behavior of Articular Cartilage after Osteochondral Autograft Transfer in an Ovine Model. American Journal of Sports Medicine, 2007, 35, 555-563.	4.2	44
40	Timely Fracture-Healing Requires Optimization of Axial Fixation Stability. Journal of Bone and Joint Surgery - Series A, 2007, 89, 1575-1585.	3.0	106
41	Endochondral ossification in vitro is influenced by mechanical bending. Bone, 2007, 40, 597-603.	2.9	13
42	Timely Fracture-Healing Requires Optimization of Axial Fixation Stability. Journal of Bone and Joint Surgery - Series A, 2007, 89, 1575-1585.	3.0	90
43	Mechanical conditions in the initial phase of bone healing. Clinical Biomechanics, 2006, 21, 646-655.	1.2	90
44	Osteoclastic activity begins early and increases over the course of bone healing. Bone, 2006, 38, 547-554.	2.9	106
45	Instability prolongs the chondral phase during bone healing in sheep. Bone, 2006, 38, 864-870.	2.9	126
46	The patella morphology in trochlear dysplasia — A comparative MRI study. Knee, 2006, 13, 145-150.	1.6	144
47	CYR61 (CCN1) Protein Expression during Fracture Healing in an Ovine Tibial Model and Its Relation to the Mechanical Fixation Stability. Journal of Orthopaedic Research, 2006, 24, 254-262.	2.3	46
48	Stress Shielding in Box and Cylinder Cervical Interbody Fusion Cage Designs. Spine, 2005, 30, 908-914.	2.0	34
49	The course of bone healing is influenced by the initial shear fixation stability. Journal of Orthopaedic Research, 2005, 23, 1022-1028.	2.3	173