Anita Schoebel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6848529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minmax robustness for multi-objective optimization problems. European Journal of Operational Research, 2014, 239, 17-31.	5.7	204
2	Line planning in public transportation: models and methods. OR Spectrum, 2012, 34, 491-510.	3.4	196
3	Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectrum, 2016, 38, 235-271.	3.4	122
4	Delay Management with Rerouting of Passengers. Transportation Science, 2012, 46, 74-89.	4.4	105
5	Computing delay resistant railway timetables. Computers and Operations Research, 2010, 37, 857-868.	4.0	104
6	An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation. Transportation Research Part C: Emerging Technologies, 2017, 74, 348-365.	7.6	103
7	To Wait or Not to Wait—And Who Goes First? Delay Management with Priority Decisions. Transportation Science, 2010, 44, 307-321.	4.4	93
8	A Model for the Delay Management Problem based on Mixed-Integer-Programming. Electronic Notes in Theoretical Computer Science, 2001, 50, 1-10.	0.9	91
9	Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic. Public Transport, 2009, 1, 211-232.	2.7	86
10	Capacity constraints in delay management. Public Transport, 2009, 1, 135-154.	2.7	67
11	An approximation algorithm for convex multi-objective programming problems. Journal of Global Optimization, 2011, 50, 397-416.	1.8	61
12	Generalized light robustness and the trade-off between robustness and nominal quality. Mathematical Methods of Operations Research, 2014, 80, 161-191.	1.0	60
13	Integer Programming Approaches for Solving the Delay Management Problem. , 2007, , 145-170.		56
14	The big cube small cube solution method for multidimensional facility location problems. Computers and Operations Research, 2010, 37, 115-122.	4.0	55
15	To Wait or Not to Wait? The Bicriteria Delay Management Problem in Public Transportation. Transportation Science, 2007, 41, 527-538.	4.4	54
16	Continuous location of dimensional structures. European Journal of Operational Research, 2004, 152, 22-44.	5.7	53
17	Timetabling with passenger routing. OR Spectrum, 2015, 37, 75-97.	3.4	53
18	Delay Management Including Capacities of Stations. Transportation Science, 2015, 49, 185-203.	4.4	49

#	Article	IF	CITATIONS
19	Bi-objective robust optimisation. European Journal of Operational Research, 2016, 252, 418-431.	5.7	48
20	A unified approach to uncertain optimization. European Journal of Operational Research, 2017, 260, 403-420.	5.7	48
21	The relationship between multi-objective robustness concepts and set-valued optimization. Fixed Point Theory and Applications, 2014, 2014, 83.	1.1	45
22	Evaluating line concepts using travel times and robustness. Public Transport, 2013, 5, 267-284.	2.7	43
23	Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Computers and Operations Research, 2014, 52, 1-15.	4.0	43
24	Improving the modulo simplex algorithm for large-scale periodic timetabling. Computers and Operations Research, 2013, 40, 1363-1370.	4.0	40
25	Locating New Stops in a Railway Network1 1This work was partially supported by the Human Potential Programme of the European Union under contract no. HPRN-CT-1999-00104 (AMORE) Electronic Notes in Theoretical Computer Science, 2001, 50, 13-23.	0.9	38
26	Locating Stops Along Bus or Railway Lines—A Bicriteria Problem. Annals of Operations Research, 2005, 136, 211-227.	4.1	38
27	Robust load planning of trains in intermodal transportation. OR Spectrum, 2014, 36, 631-668.	3.4	38
28	Algorithm Engineering in Robust Optimization. Lecture Notes in Computer Science, 2016, , 245-279.	1.3	38
29	Median hyperplanes in normed spaces — a survey. Discrete Applied Mathematics, 1998, 89, 181-195.	0.9	36
30	THE CONTINUOUS STOP LOCATION PROBLEM IN PUBLIC TRANSPORTATION NETWORKS. Asia-Pacific Journal of Operational Research, 2009, 26, 13-30.	1.3	35
31	Recoverable Robustness in Shunting and Timetabling. Lecture Notes in Computer Science, 2009, , 28-60.	1.3	35
32	On the Similarities of Some Multi riteria Decision Analysis Methods. Journal of Multi-Criteria Decision Analysis, 2011, 18, 219-230.	1.9	32
33	The Price of Strict and Light Robustness in Timetable Information. Transportation Science, 2014, 48, 225-242.	4.4	32
34	The complexity of integrating passenger routing decisions in public transportation models. Networks, 2015, 65, 228-243.	2.7	32
35	Dominance for multi-objective robust optimization concepts. European Journal of Operational Research, 2019, 273, 430-440.	5.7	30
36	Set covering with almost consecutive ones property. Discrete Optimization, 2004, 1, 215-228.	0.9	28

#	Article	IF	CITATIONS
37	The theoretical and empirical rate of convergence for geometric branch-and-bound methods. Journal of Global Optimization, 2010, 48, 473-495.	1.8	28
38	Decision uncertainty in multiobjective optimization. Journal of Global Optimization, 2017, 69, 485-510.	1.8	27
39	The Weber obnoxious facility location model: A Big Arc Small Arc approach. Computers and Operations Research, 2018, 98, 240-250.	4.0	26
40	Locating a minisum circle in the plane. Discrete Applied Mathematics, 2009, 157, 901-912.	0.9	25
41	Stop location design in public transportation networks: covering and accessibility objectives. Top, 2009, 17, 335-346.	1.6	25
42	A Bicriteria Approach for Robust Timetabling. Lecture Notes in Computer Science, 2009, , 119-144.	1.3	25
43	Locating least-distant lines in the plane. European Journal of Operational Research, 1998, 106, 152-159.	5.7	24
44	Linear Facility Location in Three Dimensions—Models and Solution Methods. Operations Research, 2002, 50, 1050-1057.	1.9	24
45	The robust knapsack problem with queries. Computers and Operations Research, 2015, 55, 12-22.	4.0	23
46	Line pool generation. Public Transport, 2017, 9, 7-32.	2.7	23
47	Periodic Timetabling with Integrated Routing: Toward Applicable Approaches. Transportation Science, 2020, 54, 1714-1731.	4.4	23
48	Design of Zone Tariff Systems in Public Transportation. Operations Research, 2004, 52, 897-908.	1.9	21
49	Multi-stage recovery robustness for optimization problems: A new concept for planning under disturbances. Information Sciences, 2012, 190, 107-126.	6.9	18
50	Multi-objective minmax robust combinatorial optimization with cardinality-constrained uncertainty. European Journal of Operational Research, 2018, 267, 628-642.	5.7	18
51	Min-ordering and max-ordering scalarization methods for multi-objective robust optimization. European Journal of Operational Research, 2019, 275, 446-459.	5.7	18
52	When closest is not always the best: The distributed p-median problem. Journal of the Operational Research Society, 2021, 72, 200-216.	3.4	18
53	Case Numbers Beyond Contact Tracing Capacity Are Endangering the Containment of COVID-19. Deutsches Ärzteblatt International, 2020, 117, 790-791.	0.9	17
54	A note on center problems with forbidden polyhedra. Operations Research Letters, 1997, 20, 165-169.	0.7	16

#	Article	IF	CITATIONS
55	When is rounding allowed in integer nonlinear optimization?. European Journal of Operational Research, 2014, 237, 404-410.	5.7	16
56	A Scenario-Based Approach for Robust Linear Optimization. Lecture Notes in Computer Science, 2011, , 139-150.	1.3	15
57	Rules of thumb: practical online-strategies for delay management. Public Transport, 2014, 6, 85-105.	2.7	15
58	Properties of Three-Dimensional Median Line Location Models. Annals of Operations Research, 2003, 122, 71-85.	4.1	13
59	Extensions of labeling algorithms for multiâ€objective uncertain shortest path problems. Networks, 2018, 72, 84-127.	2.7	13
60	Anchored Hyperplane Location Problems. Discrete and Computational Geometry, 2003, 29, 229-238.	0.6	12
61	A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables. European Journal of Operational Research, 2014, 232, 266-275.	5.7	12
62	Locating a Circle on a Sphere. Operations Research, 2007, 55, 782-791.	1.9	10
63	On models for continuous facility location with partial coverage. Journal of the Operational Research Society, 2015, 66, 33-43.	3.4	10
64	Minimizing the passengers' traveling time in the stop location problem. Journal of the Operational Research Society, 2016, 67, 1325-1337.	3.4	10
65	A biobjective approach to recoverable robustness based on location planning. European Journal of Operational Research, 2017, 261, 421-435.	5.7	10
66	A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments. Top, 2014, 22, 227-253.	1.6	9
67	Ellipsoid Bounds for Convex Quadratic Integer Programming. SIAM Journal on Optimization, 2015, 25, 741-769.	2.0	9
68	Estimating the robustness of public transport schedules using machine learning. Transportation Research Part C: Emerging Technologies, 2022, 137, 103566.	7.6	9
69	A global optimization procedure for the location of a median line in the three-dimensional space. European Journal of Operational Research, 2011, 215, 14-20.	5.7	8
70	Locating a general minisum â€~circle' on the plane. 4or, 2011, 9, 351-370.	1.6	8
71	Peat and pots: An application of robust multiobjective optimization to a mixing problem in agriculture. Computers and Electronics in Agriculture, 2018, 154, 265-275.	7.7	8
72	The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems. European Journal of Operational Research, 2021, 291, 782-793.	5.7	8

#	Article	IF	CITATIONS
73	Source Estimation for Propagation Processes on Complex Networks With an Application to Delays in Public Transportation Systems. Journal of the Royal Statistical Society Series C: Applied Statistics, 2017, 66, 521-536.	1.0	7
74	Delay Propagation and Delay Management in Transportation Networks. Profiles in Operations Research, 2018, , 285-317.	0.4	7
75	Solving restricted line location problems via a dual interpretation. Discrete Applied Mathematics, 1999, 93, 109-125.	0.9	6
76	Geometric fit of a point set by generalized circles. Journal of Global Optimization, 2011, 51, 115-132.	1.8	6
77	Minsum hyperspheres in normed spaces. Discrete Applied Mathematics, 2012, 160, 2221-2233.	0.9	6
78	Locating an axis-parallel rectangle on a Manhattan plane. Top, 2014, 22, 185-207.	1.6	6
79	Location of speed-up subnetworks. Annals of Operations Research, 2014, 223, 379-401.	4.1	6
80	Location of Dimensional Facilities in a Continuous Space. , 2015, , 135-175.		6
81	Integrated optimization of sequential processes: General analysis and application to public transport. EURO Journal on Transportation and Logistics, 2022, 11, 100073.	2.2	6
82	Finding delay-resistant line concepts using a game-theoretic approach. NETNOMICS: Economic Research and Electronic Networking, 2013, 14, 95-117.	0.9	5
83	The blockwise coordinate descent method for integer programs. Mathematical Methods of Operations Research, 2020, 91, 357-381.	1.0	5
84	Engineering the Modulo Network Simplex Heuristic for the Periodic Timetabling Problem. Lecture Notes in Computer Science, 2011, , 181-192.	1.3	5
85	Locating a median line with partial coverage distance. Journal of Global Optimization, 2015, 62, 371-389.	1.8	4
86	On the p-hub interdiction problem. Computers and Operations Research, 2020, 124, 105056.	4.0	4
87	A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances. European Journal of Operational Research, 2017, 260, 108-121.	5.7	3
88	Covering Population Areas by Railway Stops. , 2003, , 187-192.		3
89	The path player game. Mathematical Methods of Operations Research, 2008, 68, 1-20.	1.0	2
90	Approximate cutting plane approaches for exact solutions to robust optimization problems. European Journal of Operational Research, 2020, 284, 20-30.	5.7	2

#	Article	IF	CITATIONS
91	Passenger-Induced Delay Propagation: Agent-Based Simulation of Passengers in Rail Networks. Communications in Computer and Information Science, 2018, , 3-23.	0.5	2
92	The Cheapest Ticket Problem in Public Transport. Transportation Science, 2022, 56, 1432-1451.	4.4	2
93	On Center Cycles in Grid Graphs. Annals of Operations Research, 2003, 122, 163-175.	4.1	1
94	Selecting vertex disjoint paths in plane graphs. Networks, 2015, 66, 136-144.	2.7	0
95	Norm bounds and underestimators for unconstrained polynomial integer minimization. Mathematical Methods of Operations Research, 2018, 87, 73-107.	1.0	0
96	Locating Dimensional Facilities in a Continuous Space. , 2019, , 143-184.		0