Daven Henze

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/684841/daven-henze-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

161 7,261 80 45 h-index g-index citations papers 8,861 171 7.1 5.99 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
161	Sector-Based Top-Down Estimates of NO x , SO 2 , and CO Emissions in East Asia. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	2
160	Decadal Variabilities in Tropospheric Nitrogen Oxides Over United States, Europe, and China. Journal of Geophysical Research D: Atmospheres, 2022 , 127, e2021JD035872	4.4	1
159	How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35). <i>Geoscientific Model Development</i> , 2021 , 14, 7775-7793	6.3	1
158	Assessment of Updated Fuel-Based Emissions Inventories Over the Contiguous United States Using TROPOMI NO2 Retrievals. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035484	4.4	1
157	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
156	Transboundary transport of ozone pollution to a US border region: A case study of Yuma. <i>Environmental Pollution</i> , 2021 , 273, 116421	9.3	1
155	Sensitivities of Ozone Air Pollution in the Beijing-Tianjin-Hebei Area to Local and Upwind Precursor Emissions Using Adjoint Modeling. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 5752-5762	10.3	10
154	Responses of Arctic black carbon and surface temperature to multi-region emission reductions: a Hemispheric Transport of Air Pollution Phase 2 (HTAP2) ensemble modeling study. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 8637-8654	6.8	2
153	Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH₄ data with weak-constraint four-dimensional variational data assimilation. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 9545-9572	6.8	3
152	A fuel-based method for updating mobile source emissions during the COVID-19 pandemic. <i>Environmental Research Letters</i> , 2021 , 16, 065018	6.2	7
151	Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 951-971	6.8	7
150	High-resolution hybrid inversion of IASI ammonia columns to constrain US ammonia emissions using the CMAQ adjoint model. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2067-2082	6.8	5
149	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11201-11224	6.8	12
148	Satellite Monitoring for Air Quality and Health. Annual Review of Biomedical Data Science, 2021, 4, 417-4	1476	6
147	Integrated assessment of global climate, air pollution, and dietary, malnutrition and obesity health impacts of food production and consumption between 2014 and 2018. <i>Environmental Research Communications</i> , 2021 , 3, 075001	3.1	3
146	Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998-2018). <i>Environmental Science & Environmental Science & Environm</i>	10.3	143
145	Comparing health benefit calculations for alternative energy futures. <i>Air Quality, Atmosphere and Health</i> , 2020 , 13, 773-787	5.6	O

(2019-2020)

144	Inverse modeling of SO₂ and NO_{<i>x</i>} emissions over China using multisensor satellite data IPart 2: Downscaling techniques for air quality analysis and forecasts. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6651-6670	6.8	9
143	Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions From Bottom-Up Inventories, Top-Down Estimates, and Emission Scenarios. <i>Earth& Future</i> , 2020 , 8, e2020EF001520	7.9	23
142	Sources of black carbon during severe haze events in the Beijing-Tianjin-Hebei region using the adjoint method. <i>Science of the Total Environment</i> , 2020 , 740, 140149	10.2	3
141	Using Satellites to Track Indicators of Global Air Pollution and Climate Change Impacts: Lessons Learned From a NASA-Supported Science-Stakeholder Collaborative. <i>GeoHealth</i> , 2020 , 4, e2020GH0002	7 0	11
140	Inverse modeling of SO₂ and NO_{<i>x</i>} emissions over China using multisensor satellite data IPart 1: Formulation and sensitivity analysis. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6631-6650	6.8	7
139	Enhanced parallelization of the incremental 4D-Var data assimilation algorithm using the Randomized Incremental Optimal Technique. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2020 , 146, 1351-1371	6.4	5
138	The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). <i>Bulletin of the American Meteorological Society</i> , 2020 , 101, E1743-E1760	6.1	10
137	Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13091-13107	6.8	5
136	Impacts of global NO_{<i>x</i>} inversions on NO₂ and ozone simulations. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13109-	-68 13130) ¹⁴
135	Effects of a priori profile shape assumptions on comparisons between satellite NO₂ columns and model simulations. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 7231-7241	6.8	3
134	A multiphase CMAQ version 5.0 adjoint. <i>Geoscientific Model Development</i> , 2020 , 13, 2925-2944	6.3	7
133	Inverse modeling of NH3 sources using CrIS remote sensing measurements. <i>Environmental Research Letters</i> , 2020 , 15, 104082	6.2	10
132	Improving NO₂ and ozone simulations through global NO_{<i>x</i>} emission inversions 2020 ,		1
131	Development of the Low Emissions Analysis Platform - Integrated Benefits Calculator (LEAP-IBC) tool to assess air quality and climate co-benefits: Application for Bangladesh. <i>Environment International</i> , 2020 , 145, 106155	12.9	6
130	Premature Deaths in Brazil Associated With Long-Term Exposure to PM From Amazon Fires Between 2016 and 2019. <i>GeoHealth</i> , 2020 , 4, e2020GH000268	5	17
129	Mitigating the impacts of air pollutants in Nepal and climate co-benefits: a scenario-based approach. <i>Air Quality, Atmosphere and Health</i> , 2020 , 13, 361-370	5.6	4
128	Methods, availability, and applications of PM exposure estimates derived from ground measurements, satellite, and atmospheric models. <i>Journal of the Air and Waste Management Association</i> , 2019 , 69, 1391-1414	2.4	45
127	Inequality of household consumption and air pollution-related deaths in China. <i>Nature Communications</i> , 2019 , 10, 4337	17.4	53

126	Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons (a) focus on the Indian subcontinent. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6437-6458	6.8	17
125	Assessing the Iterative Finite Difference Mass Balance and 4D-Var Methods to Derive Ammonia Emissions Over North America Using Synthetic Observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 4222-4236	4.4	8
124	Particulate matter-attributable mortality and relationships with carbon dioxide in 250 urban areas worldwide. <i>Scientific Reports</i> , 2019 , 9, 11552	4.9	48
123	Hybrid Mass Balance/4D-Var Joint Inversion of NO and SO Emissions in East Asia. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 8203-8224	4.4	18
122	SO Emission Estimates Using OMI SO Retrievals for 2005-2017. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 8336-8359	4.4	28
121	The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers. <i>Nature Communications</i> , 2019 , 10, 3281	17.4	15
120	Quantifying Emissions of CO and NOx Using Observations From MOPITT, OMI, TES, and OSIRIS. Journal of Geophysical Research D: Atmospheres, 2019 , 124, 1170-1193	4.4	6
119	Inversion Estimates of Lognormally Distributed Methane Emission Rates From the Haynesville-Bossier Oil and Gas Production Region Using Airborne Measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 3520-3531	4.4	11
118	Elucidating emissions control strategies for ozone to protect human health and public welfare within the continental United States. <i>Environmental Research Letters</i> , 2019 , 14, 124093	6.2	3
117	Prior biosphere model impact on global terrestrial CO₂ fluxes estimated from OCO-2 retrievals. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 13267-13287	6.8	13
116	Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14585-14606	6.8	24
115	Optimal and scalable methods to approximate the solutions of large-scale Bayesian problems: theory and application to atmospheric inversion and data assimilation. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2018 , 144, 365-390	6.4	8
114	Top-down constraints on global N₂O emissions at optimal resolution: application of alhew dimension reduction technique. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 735-7	,68 56	16
113	Unexpected slowdown of US pollutant emission reduction in the past decade. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5099-5104	11.5	103
112	Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 339-355	6.8	128
111	HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10497-10520	6.8	34
110	Scientific assessment of background ozone over the U.S.: Implications for air quality management. <i>Elementa</i> , 2018 , 6, 56	3.6	52
109	Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more?. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2727-2744	6.8	7

108	Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 15017-15046	6.8	29
107	Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 15581-15600	0 ^{6.8}	6
106	The impact of future emission policies on tropospheric ozone using a parameterised approach. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 8953-8978	6.8	29
105	The effects of intercontinental emission sources on European air pollution levels. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 13655-13672	6.8	23
104	Estimates of the Global Burden of Ambient [Formula: see text], Ozone, and [Formula: see text] on Asthma Incidence and Emergency Room Visits. <i>Environmental Health Perspectives</i> , 2018 , 126, 107004	8.4	132
103	Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 12551-12580	6.8	44
102	Multi-model study of HTAPIII on sulfur and nitrogen deposition. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 6847-6866	6.8	27
101	Intra-urban spatial variability of surface ozone in Riverside, CA: viability and validation of low-cost sensors. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 1777-1792	4	26
100	PM source attribution for Seoul in May from 2009 to 2013 using GEOS-Chem and its adjoint model. <i>Environmental Pollution</i> , 2017 , 221, 377-384	9.3	33
99	Transient climate and ambient health impacts due to national solid fuel cookstove emissions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1269-1274	11.5	74
98	Improving present day and future estimates of anthropogenic sectoral emissions and the resulting air quality impacts in Africa. <i>Faraday Discussions</i> , 2017 , 200, 397-412	3.6	11
97	Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment. <i>Environment International</i> , 2017 , 101, 173-182	12.9	142
96	What factors control the trend of increasing AAOD over the United States in the last decade?. Journal of Geophysical Research D: Atmospheres, 2017 , 122, 1797-1810	4.4	16
95	Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 6665-6673	10.3	12
94	Monthly top-down NOx emissions for China (2005\(\textstyle{0}\)012): A hybrid inversion method and trend analysis. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4600-4625	4.4	49
93	Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4718-4734	4.4	21
92	Impacts and mitigation of excess diesel-related NO emissions in 11 major vehicle markets. <i>Nature</i> , 2017 , 545, 467-471	50.4	298
91	How accounting for climate and health impacts of emissions could change the US energy system. <i>Energy Policy</i> , 2017 , 102, 396-405	7.2	16

90	Sense size-dependent dust loading and emission from space using reflected solar and infrared spectral measurements: An observation system simulation experiment. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 8233-8254	4.4	9
89	Updated Global Estimates of Respiratory Mortality in Adults B0Years of Age Attributable to Long-Term Ozone Exposure. <i>Environmental Health Perspectives</i> , 2017 , 125, 087021	8.4	121
88	Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The San Joaquin Valley. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 3686-36	9 9 ·4	22
87	Modeling the diurnal variability of agricultural ammonia in Bakersfield, California, during the CalNex campaign. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2721-2739	6.8	11
86	Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 5721-5750	6.8	36
85	Four-dimensional variational inversion of black carbon emissions during ARCTAS-CARB with WRFDA-Chem. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7605-7633	6.8	9
84	Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 9697-9716	6.8	33
83	Source attribution of Arctic black carbon constrained by aircraft and surface measurements. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 11971-11989	6.8	47
82	A 15-year record of CO emissions constrained by MOPITT CO observations. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4565-4583	6.8	69
81	Sources and Processes Affecting Fine Particulate Matter Pollution over North China: An Adjoint Analysis of the Beijing APEC Period. <i>Environmental Science & Environmental Sci</i>	10.3	7°
80	Global and regional radiative forcing from 20 % reductions in BC, OC and SO₄ Ian HTAP2 multi-model study. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13579-13599	6.8	37
79	Constraints on methane emissions in North America from future geostationary remote-sensing measurements. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6175-6190	6.8	15
78	Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 12649-12666	6.8	16
77	Sources of nitrogen deposition in Federal Class I areas in the US. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 525-540	6.8	16
76	Impacts of anthropogenic and natural sources on free tropospheric ozone over the Middle East. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6537-6546	6.8	7
75	The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. <i>Air Quality, Atmosphere and Health</i> , 2016 , 9, 51-68	5.6	64
74	Impacts of Foreign, Domestic, and State-Level Emissions on Ozone-Induced Vegetation Loss in the United States. <i>Environmental Science & Environmental </i>	10.3	20
73	Assessing public health burden associated with exposure to ambient black carbon in the United States. <i>Science of the Total Environment</i> , 2016 , 539, 515-525	10.2	62

(2015-2016)

72	Application to China and implications for air quality forecasts. <i>Geophysical Research Letters</i> , 2016 , 43, 9931-9938	4.9	24
71	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. <i>Environmental Science & Environmental Scienc</i>	10.3	139
70	Differences between magnitudes and health impacts of BC emissions across the United States using 12 km scale seasonal source apportionment. <i>Environmental Science & Environmental Science & Environme</i>	10.3	15
69	Response of global particulate-matter-related mortality to changes in local precursor emissions. <i>Environmental Science & Environmental Science & Envi</i>	10.3	88
68	Source attribution of particulate matter pollution over North China with the adjoint method. <i>Environmental Research Letters</i> , 2015 , 10, 084011	6.2	92
67	Improved western U.S. background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 3572-3592	4.4	12
66	Sources and Impacts of Atmospheric NH3: Current Understanding and Frontiers for Modeling, Measurements, and Remote Sensing in North America. <i>Current Pollution Reports</i> , 2015 , 1, 95-116	7.6	43
65	Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2015 , 141, 1906-1921	6.4	35
64	Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10905-10924	6.8	41
63	Sensitivity analysis of the potential impact of discrepancies in stratosphereEroposphere exchange on inferred sources and sinks of CO₂. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11773-11788	6.8	17
62	Estimates of black carbon emissions in the western United States using the GEOS-Chem adjoint model. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7685-7702	6.8	10
61	Regional data assimilation of multi-spectral MOPITT observations of CO over North America. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6801-6814	6.8	23
60	Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 99-112	6.8	17
59	The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10645-10667	6.8	5
58	Constraining black carbon aerosol over Asia using OMI aerosol absorption optical depth and the adjoint of GEOS-Chem. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10281-10308	6.8	33
57	Sensitivity of top-down CO source estimates to the modeled vertical structure in atmospheric CO. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1521-1537	6.8	27
56	Implications of RCP emissions for future changes in vegetative exposure to ozone in the western U.S <i>Geophysical Research Letters</i> , 2015 , 42, 4190-4198	4.9	8
55	Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions. <i>Environmental Research Letters</i> , 2015 , 10, 114003	6.2	24

54	Toronto area ozone: Long-term measurements and modeled sources of poor air quality events. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,368-11,390	4.4	12
53	Premature deaths attributed to source-specific BC emissions in six urban US regions. <i>Environmental Research Letters</i> , 2015 , 10, 114014	6.2	13
52	Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation. Atmospheric Measurement Techniques, 2015, 8, 5189-5211	4	24
51	Simulation of atmospheric N₂O with GEOS-Chem and its adjoint: evaluation of observational constraints. <i>Geoscientific Model Development</i> , 2015 , 8, 3179-3198	6.3	13
50	Development and application of the WRFPLUS-Chem online chemistry adjoint and WRFDA-Chem assimilation system. <i>Geoscientific Model Development</i> , 2015 , 8, 1857-1876	6.3	13
49	Source-receptor relationships of column-average CO2 and implications for the impact of observations on flux inversions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 5214-5236	4.4	19
48	Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 4343-4364	4.4	250
47	Assessment of source contributions to seasonal vegetative exposure to ozone in the U.S <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 324-340	4.4	35
46	Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2555-2570	6.8	31
45	Inferring regional sources and sinks of atmospheric CO₂ from GOSAT XCO₂ data. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3703-3727	6.8	91
44	Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6315-6327	6.8	28
43	Emissions estimation from satellite retrievals: A review of current capability. <i>Atmospheric Environment</i> , 2013 , 77, 1011-1042	5.3	270
42	GLIMPSE: a rapid decision framework for energy and environmental policy. <i>Environmental Science & Environmental Science</i>	10.3	23
41	Accounting for climate and air quality damages in future U.S. electricity generation scenarios. <i>Environmental Science & Environmental Science & Envir</i>	10.3	28
40	Sources and processes contributing to nitrogen deposition: an adjoint model analysis applied to biodiversity hotspots worldwide. <i>Environmental Science & Environmental Scienc</i>	10.3	64
39	Response to comment on "Natural and anthropogenic ethanol sources in North America and potential atmospheric impacts of ethanol fuel use". <i>Environmental Science & amp; Technology</i> , 2013 , 47, 2141	10.3	3
38	Assessing remote polarimetric measurement sensitivities to aerosol emissions using the geos-chem adjoint model. <i>Atmospheric Measurement Techniques</i> , 2013 , 6, 3441-3457	4	8
37	Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 3355-3368	4.4	98

(2011-2013)

36	Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution. <i>Geophysical Research Letters</i> , 2013 , 40, 3270-3275	4.9	44
35	Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 6396-6413	4.4	78
34	Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides. <i>Geophysical Research Letters</i> , 2013 , 40, 1021-1026	4.9	36
33	Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 2073-2083	4.4	50
32	Attribution of direct ozone radiative forcing to spatially resolved emissions. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	28
31	Using a global aerosol model adjoint to unravel the footprint of spatially-distributed emissions on cloud droplet number and cloud albedo. <i>Geophysical Research Letters</i> , 2012 , 39,	4.9	7
30	Spatially refined aerosol direct radiative forcing efficiencies. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	45
29	Natural and anthropogenic ethanol sources inNorth America and potential atmospheric impacts of ethanol fuel use. <i>Environmental Science & Environmental En</i>	10.3	34
28	Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	70
27	ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 527-543	6.8	29
26	Impact of the isoprene photochemical cascade on tropical ozone. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1307-1325	6.8	91
25	Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1823-1832	6.8	71
24	The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2077-20	0 9 8	76
23	Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2725-2746	6.8	117
22	The spatial extent of source influences on modeled column concentrations of short-lived species. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	24
21	Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		46
20	Quantifying spatial and seasonal variability in atmospheric ammonia with in situ and space-based observations. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	43
19	Quantifying the impact of model errors on top-down estimates of carbon monoxide emissions using satellite observations. <i>Journal of Geophysical Research</i> , 2011 , 116,		53

18	Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2837-2852	6.8	180
17	TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 10743-10763	6.8	107
16	Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 855-876	6.8	241
15	Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns. <i>Journal of Geophysical Research</i> , 2009 , 114,		125
14	Intercontinental source attribution of ozone pollution at western U.S. sites using an adjoint method. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	87
13	Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. <i>Journal of Geophysical Research</i> , 2009 , 114,		259
12	Inverse modeling and mapping US air quality influences of inorganic PM_{2.5} precursor emissions using the adjoint of GEOS-Chem. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5877-	5963	193
11	Implementation and evaluation of an array of chemical solvers in the Global Chemical Transport Model GEOS-Chem. <i>Geoscientific Model Development</i> , 2009 , 2, 89-96	6.3	19
10	Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2405-2420	6.8	312
9	The adjoint of CMAQ. Environmental Science & amp; Technology, 2007, 41, 7807-17	10.3	96
8	Development of the adjoint of GEOS-Chem. Atmospheric Chemistry and Physics, 2007, 7, 2413-2433	6.8	301
7	Inverse Modeling of Aerosol Dynamics Using Adjoints: Theoretical and Numerical Considerations. <i>Aerosol Science and Technology</i> , 2005 , 39, 677-694	3.4	30
6	Extended barbaralanes: sigmatropic shiftamers or sigma-polyacenes?. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4256-63	16.4	22
5	Are 1,5-disubstituted semibullvalenes that have C2v equilibrium geometries necessarily bishomoaromatic?. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14977-82	16.4	24
4	Interannual variation of reactive nitrogen emissions and their impacts on PM2.5 air pollution in China during 2005-2015. <i>Environmental Research Letters</i> ,	6.2	3
3	COVID-19 Lockdowns Afford the First Satellite-Based Confirmation That Vehicles Are an Under-recognized Source of Urban NH3 Pollution in Los Angeles. <i>Environmental Science and Technology Letters</i> ,	11	3
2	Anthropogenic Secondary Organic Aerosols Contribute Substantially to Air Pollution Mortality		2
1	Analysis of recent anthropogenic surface emissions from bottom-up inventories and top-down estimates: are future emission scenarios valid for the recent past?		3