Mae Sexauer Gustin

List of Publications by Citations

Source: https://exaly.com/author-pdf/6848362/mae-sexauer-gustin-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88
papers

3,637
citations

4,027
ext. papers

34
papers

34
papers

7.6
avg, IF

58
g-index

5.72
L-index

#	Paper	IF	Citations
88	Investigation of the light-enhanced emission of mercury from naturally enriched substrates. <i>Atmospheric Environment</i> , 2002 , 36, 3241-3254	5.3	185
87	Modeling the past atmospheric deposition of mercury using natural archives. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	178
86	An update on the natural sources and sinks of atmospheric mercury. <i>Applied Geochemistry</i> , 2008 , 23, 482-493	3.5	149
85	Do we understand what the mercury speciation instruments are actually measuring? Results of RAMIX. <i>Environmental Science & Eamp; Technology</i> , 2013 , 47, 7295-306	10.3	144
84	Are mercury emissions from geologic sources significant? A status report. <i>Science of the Total Environment</i> , 2003 , 304, 153-67	10.2	124
83	Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA. <i>Atmospheric Environment</i> , 2001 , 35, 3987-3997	5.3	122
82	Reducing the uncertainty in measurement and understanding of mercury in the atmosphere. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	114
81	Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods. <i>Environmental Science & Environmental &</i>	10.3	113
80	Effect of Watering and Soil Moisture on Mercury Emissions from Soils. <i>Biogeochemistry</i> , 2005 , 76, 215-2	33 8	113
79	Assessing the contribution of natural sources to regional atmospheric mercury budgets. <i>Science of the Total Environment</i> , 2000 , 259, 61-71	10.2	109
78	Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere. <i>Journal of Geophysical Research</i> , 1997 , 102, 3891-3898		101
77	Comparison of gaseous oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange membranes. <i>Environmental Science & Environmental & E</i>	10.3	92
76	Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes. <i>Science of the Total Environment</i> , 2010 , 408, 4778-83	10.2	92
75	Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute deposition rates from single peat records? The example of Store Mosse, Sweden. <i>Global Biogeochemical Cycles</i> , 2004 , 18, n/a-n/a	5.9	85
74	Assessing the Influence of Different Atmospheric and Soil Mercury Concentrations on Foliar Mercury Concentrations in a Controlled Environment. <i>Water, Air, and Soil Pollution</i> , 2007 , 181, 373-384	2.6	76
73	Mired in the past flooking to the future: Geochemistry of peat and the analysis of past environmental changes. <i>Global and Planetary Change</i> , 2006 , 53, 209-221	4.2	76
72	Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire. <i>Science of the Total Environment</i> , 2006 , 367, 222-33	10.2	72

(2010-2009)

71	Observations of speciated atmospheric mercury at three sites in Nevada: Evidence for a free tropospheric source of reactive gaseous mercury. <i>Journal of Geophysical Research</i> , 2009 , 114,		71
70	Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors. <i>Applied Geochemistry</i> , 2007 , 22, 1451-1466	3.5	71
69	Mercury exchange between the atmosphere and low mercury containing substrates. <i>Applied Geochemistry</i> , 2006 , 21, 1913-1923	3.5	71
68	Assessing the stability of mercury and methylmercury in a varved lake sediment deposit. <i>Environmental Science & Description (Marchine)</i> 2008, 42, 4391-6	10.3	65
67	Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	61
66	Atmospheric mercury concentrations and speciation measured from 2004 to 2007 in Reno, Nevada, USA. <i>Atmospheric Environment</i> , 2009 , 43, 4646-4654	5.3	57
65	Atmospheric Mercury Concentrations Associated with Geologically and Anthropogenically Enriched Sites in Central Western Nevada. <i>Environmental Science & Environmental Science</i>	10.3	54
64	Importance of Integration and Implementation of Emerging and Future Mercury Research into the Minamata Convention. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 2767-70	10.3	52
63	Determinants of atmospheric mercury concentrations in Reno, Nevada, U.S.A. <i>Science of the Total Environment</i> , 2009 , 408, 431-8	10.2	48
62	Speciation of atmospheric mercury at two sites in northern Nevada, USA. <i>Atmospheric Environment</i> , 2008 , 42, 927-939	5.3	45
61	Evidence for Nonstomatal Uptake of Hg by Aspen and Translocation of Hg from Foliage to Tree Rings in Austrian Pine. <i>Environmental Science & Environmental Science & Environme</i>	10.3	42
60	A review of passive sampling systems for ambient air mercury measurements. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 374-92	4.3	42
59	Atmospheric mercury emissions and speciation at the sulphur bank mercury mine superfund site, Northern California. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	42
58	Atmospheric mercury emissions from substrates and fumaroles associated with three hydrothermal systems in the western United States. <i>Journal of Geophysical Research</i> , 2006 , 111,		41
57	Scaling of atmospheric mercury emissions from three naturally enriched areas: Flowery Peak, Nevada; Peavine Peak, Nevada; and Long Valley Caldera, California. <i>Science of the Total Environment</i> , 2002 , 290, 91-104	10.2	41
56	Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. <i>Biogeochemistry</i> , 2014 , 120, 149-162	3.8	37
55	Building upon the Conceptual Model for Soil Mercury Flux: Evidence of a Link Between Moisture Evaporation and Hg Evasion. <i>Water, Air, and Soil Pollution</i> , 2013 , 224, 1	2.6	36
54	Laboratory investigation of Hg release from flue gas desulfurization products. <i>Environmental Science & Environmental Science </i>	10.3	34

53	Testing the use of passive sampling systems for understanding air mercury concentrations and dry deposition across Florida, USA. <i>Science of the Total Environment</i> , 2012 , 424, 297-307	10.2	32
52	Evidence for a free troposphere source of mercury in wet deposition in the Western United States. <i>Environmental Science & Environmental Science & Env</i>	10.3	32
51	Environmental archives of atmospheric Hg deposition - A review. <i>Science of the Total Environment</i> , 2020 , 709, 134800	10.2	32
50	A synthesis of research needs for improving the understanding of atmospheric mercury cycling. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 9133-9144	6.8	29
49	Investigation of mercury deposition and potential sources at six sites from the Pacific Coast to the Great Basin, USA. <i>Science of the Total Environment</i> , 2014 , 470-471, 1099-113	10.2	27
48	Mining, metallurgy and the historical origin of mercury pollution in lakes and watercourses in Central Sweden. <i>Environmental Science & Environmental </i>	10.3	26
47	Importance of vegetation type for mercury sequestration in the northern Swedish mire, Rdmossamyran. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 7116-7126	5.5	26
46	Deciphering potential chemical compounds of gaseous oxidized mercury in Florida, USA. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 1689-1698	6.8	25
45	Mercury pollution trends in subarctic lakes in the northern Swedish mountains. <i>Ambio</i> , 2007 , 36, 401-5	6.5	24
44	An assessment of the significance of mercury release from coal fly ash. <i>Journal of the Air and Waste Management Association</i> , 2004 , 54, 320-30	2.4	24
43	Automated Calibration of Atmospheric Oxidized Mercury Measurements. <i>Environmental Science & Environmental Science</i>	10.3	23
42	Evaluating paleoproxies for peat decomposition and their relationship to peat geochemistry. <i>Holocene</i> , 2013 , 23, 1666-1671	2.6	23
41	Use of passive sampling methods and models to understand sources of mercury deposition to high elevation sites in the Western United States. <i>Environmental Science & Environmental Science & Environm</i>	10.3	22
40	Evidence for Different Reactive Hg Sources and Chemical Compounds at Adjacent Valley and High Elevation Locations. <i>Environmental Science & Elevation Science & Elevat</i>	10.3	21
39	Investigation of mercury accumulation in cattails growing in constructed wetland mesocosms. <i>Wetlands</i> , 2007 , 27, 1056-1065	1.7	21
38	Comparison of 4 Methods for Measurement of Reactive, Gaseous Oxidized, and Particulate Bound Mercury. <i>Environmental Science & Environmental Science &</i>	10.3	21
37	The Nevada Rural Ozone Initiative (NVROI): Insights to understanding air pollution in complex terrain. <i>Science of the Total Environment</i> , 2015 , 530-531, 455-470	10.2	20
36	Assessment of the Suitability of Tree Rings as Archives of Global and Regional Atmospheric Mercury Pollution. <i>Environmental Science & Environmental S</i>	10.3	19

(2020-2015)

35	Variability and sources of surface ozone at rural sites in Nevada, USA: Results from two years of the Nevada Rural Ozone Initiative. <i>Science of the Total Environment</i> , 2015 , 530-531, 471-482	10.2	19	
34	Incorporation of radiometric tracers in peat and implications for estimating accumulation rates. <i>Science of the Total Environment</i> , 2014 , 493, 170-7	10.2	19	
33	Exchange of Mercury between the Atmosphere and Terrestrial Ecosystems 2011 , 423-451		19	
32	Mercury biogeochemical cycling: A synthesis of recent scientific advances. <i>Science of the Total Environment</i> , 2020 , 737, 139619	10.2	18	
31	Beryllium-7 as a natural tracer for short-term downwash in peat. <i>Biogeochemistry</i> , 2014 , 119, 329-339	3.8	17	
30	Investigation of the potential for mercury release from flue gas desulfurization solids applied as an agricultural amendment. <i>Journal of Environmental Quality</i> , 2014 , 43, 253-62	3.4	17	
29	Results of a controlled field experiment to assess the use of tree tissue concentrations as bioindicators of air Hg. <i>Biogeochemistry</i> , 2019 , 142, 265-279	3.8	17	
28	Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. <i>Science of the Total Environment</i> , 2020 , 710, 136319	10.2	16	
27	Downwash of atmospherically deposited trace metals in peat and the influence of rainfall intensity: an experimental test. <i>Science of the Total Environment</i> , 2015 , 506-507, 95-101	10.2	14	
26	Industrial-era lead and mercury contamination in southern Greenland implicates North American sources. <i>Science of the Total Environment</i> , 2018 , 613-614, 919-930	10.2	14	
25	Identification of sources contributing to PM2.5 and ozone at elevated sites in the western U.S. by receptor analysis: Lassen Volcanic National Park, California, and Great Basin National Park, Nevada. <i>Science of the Total Environment</i> , 2015 , 530-531, 505-518	10.2	13	
24	Improvement of quantification and identification of atmospheric reactive mercury. <i>Atmospheric Environment</i> , 2020 , 224, 117307	5.3	12	
23	Development of a Particulate Mass Measurement System for Quantification of Ambient Reactive Mercury. <i>Environmental Science & Environmental Science & </i>	10.3	11	
22	Evaluation of cation exchange membrane performance under exposure to high Hg⁰ and HgBr₂ concentrations. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 1207-1217	4	11	
21	What caused Earthß largest mass extinction event? New evidence from the Permian-Triassic boundary in northeastern Utah. <i>Global and Planetary Change</i> , 2019 , 177, 81-100	4.2	11	
20	Investigating the influence of long-range transport on surface O3 in Nevada, USA, using observations from multiple measurement platforms. <i>Science of the Total Environment</i> , 2015 , 530-531, 493-504	10.2	9	
19	Development of an Understanding of Reactive Mercury in Ambient Air: A Review. <i>Atmosphere</i> , 2021 , 12, 73	2.7	9	
18	Use of Multiple Lines of Evidence to Understand Reactive Mercury Concentrations and Chemistry in Hawai R , Nevada, Maryland, and Utah, USA. <i>Environmental Science & amp; Technology</i> , 2020 , 54, 7922-793	31 ^{10.3}	8	

17	Comparison of co-located ice-core and tree-ring mercury records indicates potential radial translocation of mercury in whitebark pine. <i>Science of the Total Environment</i> , 2020 , 743, 140695	10.2	8
16	Use of multiple tools including lead isotopes to decipher sources of ozone and reactive mercury to urban and rural locations in Nevada, USA. <i>Science of the Total Environment</i> , 2018 , 615, 1411-1427	10.2	8
15	Historical trends of mercury and spheroidal carbonaceous particle deposition in sub-alpine lakes in the Great Basin, United States. <i>Journal of Paleolimnology</i> , 2014 , 52, 405-418	2.1	8
14	Gas-exchange chamber analysis of elemental mercury deposition/emission to alluvium, ore, and mine tailings. <i>Chemosphere</i> , 2015 , 131, 209-16	8.4	7
13	Improvements to the Accuracy of Atmospheric Oxidized Mercury Measurements. <i>Environmental Science & Environmental Science & En</i>	10.3	7
12	Influence of Natural Sources on Mercury in Water, Sediment and Aquatic Biota in Seven Tributary Streams of the East Fork of the Upper Carson River, California. <i>Water, Air, and Soil Pollution</i> , 2002 , 133, 283-295	2.6	7
11	What is in commercial cat and dog food? The case for mercury and ingredient testing. <i>Science of the Total Environment</i> , 2019 , 684, 276-280	10.2	6
10	Evidence for sites of methylmercury formation in a flowing water system: impact of anthropogenic barriers and water management. <i>Science of the Total Environment</i> , 2014 , 478, 58-69	10.2	6
9	Use of Membranes and Detailed HYSPLIT Analyses to Understand Atmospheric Particulate, Gaseous Oxidized, and Reactive Mercury Chemistry. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	6
8	Evaluation of sorption surface materials for reactive mercury compounds. <i>Atmospheric Environment</i> , 2020 , 242, 117836	5.3	5
7	Determination of the potential for release of mercury from combustion product amended soils: Part 1Simulations of beneficial use. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, 673-83	2.4	3
6	Mercury biogeochemical cycling and processes: implications for human and ecosystem health. <i>Science of the Total Environment</i> , 2014 , 496, 635	10.2	2
5	Fate of Springtime Atmospheric Reactive Mercury: Concentrations and Deposition at Zeppelin, Svalbard. <i>ACS Earth and Space Chemistry</i> ,	3.2	2
4	Determination of the potential for release of mercury from combustion product amended soils: part 2coal fly ash generated stabilized soil and degradation products. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, 1495-508	2.4	1
3	Further investigations into the use of tree rings as archives of atmospheric mercury concentrations. <i>Biogeochemistry</i> , 2022 , 158, 167	3.8	1
2	Structural equation modeling of long-term controls on mercury and bromine accumulation in Pinheiro mire (Minas Gerais, Brazil). <i>Science of the Total Environment</i> , 2021 , 757, 143940	10.2	0
1	Development of a statistical model to identify spatial and meteorological drivers of elevated O3 in Nevada and its application to other rural mountainous regions. <i>Science of the Total Environment</i> , 2015 , 530-531, 526-533	10.2	