Mickie Bhatia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6847570/publications.pdf

Version: 2024-02-01

90 papers

9,584 citations

42 h-index 51562 86 g-index

92 all docs 92 docs citations

92 times ranked 10198 citing authors

#	Article	IF	CITATIONS
1	Biting into a union of oncology and metabolism through leukemic stem cells. Cell Metabolism, 2022, 34, 801-802.	7.2	O
2	Challenges in Cell Fate Acquisition to Scid-Repopulating Activity from Hemogenic Endothelium of hiPSCs Derived from AML Patients Using Forced Transcription Factor Expression. Cells, 2022, 11, 1915.	1.8	0
3	Abnormal dopamine receptor signaling allows selective therapeutic targeting of neoplastic progenitors in AML patients. Cell Reports Medicine, 2021, 2, 100202.	3. 3	5
4	Phosphorylation state of the histone variant H2A.X controls human stem and progenitor cell fate decisions. Cell Reports, 2021, 34, 108818.	2.9	10
5	Human pluripotent stem cells identify molecular targets of trisomy 12 in chronic lymphocytic leukemia patients. Cell Reports, 2021, 34, 108845.	2.9	3
6	Targeting SUMOylation dependency in human cancer stem cells through a unique SAE2 motif revealed by chemical genomics. Cell Chemical Biology, 2021, 28, 1394-1406.e10.	2.5	13
7	Chemotherapy-Induced Neuropathy and Drug Discovery Platform Using Human Sensory Neurons Converted Directly from Adult Peripheral Blood. Stem Cells Translational Medicine, 2019, 8, 1180-1191.	1.6	22
8	Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell, 2019, 177, 910-924.e22.	13.5	36
9	A phase 1 trial evaluating thioridazine in combination with cytarabine in patients with acute myeloid leukemia. Blood Advances, 2018, 2, 1935-1945.	2.5	34
10	Identification of Chemotherapy-Induced Leukemic-Regenerating Cells Reveals a Transient Vulnerability of Human AML Recurrence. Cancer Cell, 2018, 34, 483-498.e5.	7.7	125
11	CXCL12/CXCR4 Signaling Enhances Human PSC-Derived Hematopoietic ProgenitorÂFunction and Overcomes Early InÂVivo Transplantation Failure. Stem Cell Reports, 2018, 10, 1625-1641.	2.3	27
12	Sam68 Allows Selective Targeting of Human Cancer Stem Cells. Cell Chemical Biology, 2017, 24, 833-844.e9.	2.5	38
13	Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency. Cell Reports, 2017, 19, 20-35.	2.9	53
14	Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nature Cell Biology, 2017, 19, 1336-1347.	4.6	150
15	Brief Report: Human Acute Myeloid Leukemia Reprogramming to Pluripotency Is a Rare Event and Selects for Patient Hematopoietic Cells Devoid of Leukemic Mutations. Stem Cells, 2017, 35, 2095-2102.	1.4	27
16	GSK3 Deficiencies in Hematopoietic Stem Cells Initiate Pre-neoplastic State that Is Predictive of Clinical Outcomes of Human Acute Leukemia. Cancer Cell, 2016, 29, 61-74.	7.7	52
17	Single Transcription Factor Conversion of Human Blood Fate to NPCs with CNS and PNS Developmental Capacity. Cell Reports, 2015, 11, 1367-1376.	2.9	73
18	Playing musical chairs with bone marrow transplantation to eliminate leukemia stem cells. Molecular and Cellular Oncology, 2015, 2, e988480.	0.3	1

#	Article	IF	CITATIONS
19	Reversible Lineage-Specific Priming of Human Embryonic Stem Cells Can Be Exploited to Optimize the Yield of Differentiated Cells. Stem Cells, 2015, 33, 1142-1152.	1.4	11
20	Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor–Initiating Cells. Clinical Cancer Research, 2015, 21, 5324-5337.	3.2	48
21	Innate immune response of human pluripotent stem cell-derived airway epithelium. Innate Immunity, 2015, 21, 504-511.	1.1	3
22	Cellular Reprogramming Allows Generation of Autologous Hematopoietic Progenitors From AML Patients That Are Devoid of Patient-Specific Genomic Aberrations. Stem Cells, 2015, 33, 1839-1849.	1.4	14
23	Derivation of human induced pluripotent stem cells through continued exposure of OCT4-induced plastic human fibroblasts to reprogramming media. Stem Cell Research, 2015, 15, 240-242.	0.3	1
24	Acquisition of pluripotency through continued environmental influence on OCT4-induced plastic human fibroblasts. Stem Cell Research, 2015, 15, 221-230.	0.3	5
25	Expansive Generation of Functional Airway Epithelium From Human Embryonic Stem Cells. Stem Cells Translational Medicine, 2014, 3, 7-17.	1.6	28
26	Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states. Nature Communications, 2014, 5, 5605.	5.8	45
27	Molecular Evidence for OCT4-Induced Plasticity in Adult Human Fibroblasts Required for Direct Cell Fate Conversion to Lineage Specific Progenitors. Stem Cells, 2014, 32, 2178-2187.	1.4	41
28	Driving human–mouse avatars to understand the HSC niche. Cell Cycle, 2014, 13, 1511-1512.	1.3	0
29	Bone marrow localization and functional properties of human hematopoietic stem cells. Current Opinion in Hematology, 2014, 21, 249-255.	1.2	8
30	Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human. EMBO Reports, 2014, 15, 1128-1138.	2.0	30
31	Niche displacement of human leukemic stem cells uniquely allows their competitive replacement with healthy HSPCs. Journal of Experimental Medicine, 2014, 211, 1925-1935.	4.2	75
32	Activation of Neural Cell Fate Programs Toward Direct Conversion of Adult Human Fibroblasts into Tri-Potent Neural Progenitors Using <i>OCT-4</i> . Stem Cells and Development, 2014, 23, 1937-1946.	1.1	67
33	Molecular Pathways: Epigenetic Modulation of Wnt–Glycogen Synthase Kinase-3 Signaling to Target Human Cancer Stem Cells. Clinical Cancer Research, 2014, 20, 5372-5378.	3.2	36
34	Regional Localization within the Bone Marrow Influences the Functional Capacity of Human HSCs. Cell Stem Cell, 2013, 13, 175-189.	5.2	103
35	Human Embryonic Stem Cell-Derived Hematopoietic Cells Maintain Core Epigenetic Machinery of the Polycomb Group/Trithorax Group Complexes Distinctly from Functional Adult Hematopoietic Stem Cells. Stem Cells and Development, 2013, 22, 73-89.	1.1	11
36	Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood, 2013, 122, 1162-1173.	0.6	50

#	Article	IF	CITATIONS
37	Nonhematopoietic cells represent a more rational target of inÂvivo hedgehog signaling affecting normal or acute myeloid leukemia progenitors. Experimental Hematology, 2013, 41, 858-869.e4.	0.2	22
38	Foundational concepts of cell fate conversion to the hematopoietic lineage. Current Opinion in Genetics and Development, 2013, 23, 585-590.	1.5	3
39	Gli3-mediated hedgehog inhibition in human pluripotent stem cells initiates and augments developmental programming of adult hematopoiesis. Blood, 2013, 121, 1543-1552.	0.6	14
40	Human pluripotency: A difficult state to make smart choices. Cell Cycle, 2012, 11, 2411-2412.	1.3	3
41	Activin A Promotes Hematopoietic Fated Mesoderm Development Through Upregulation of Brachyury in Human Embryonic Stem Cells. Stem Cells and Development, 2012, 21, 2866-2877.	1.1	21
42	In Vivo Generation of Neural Tumors from Neoplastic Pluripotent Stem Cells Models Early Human Pediatric Brain Tumor Formation. Stem Cells, 2012, 30, 392-404.	1.4	38
43	Inability of Human Induced Pluripotent Stem Cell-Hematopoietic Derivatives to Downregulate MicroRNAs In Vivo Reveals a Block in Xenograft Hematopoietic Regeneration. Stem Cells, 2012, 30, 131-139.	1.4	33
44	Identification of Drugs IncludingÂa DopamineÂReceptor Antagonist that Selectively Target Cancer Stem Cells. Cell, 2012, 149, 1284-1297.	13.5	420
45	Cell Fate Potential of Human Pluripotent Stem Cells Is Encoded by Histone Modifications. Cell Stem Cell, 2011, 9, 24-36.	5.2	80
46	Clonal interrogation of stem cells. Nature Methods, 2011, 8, S36-S40.	9.0	34
46	Clonal interrogation of stem cells. Nature Methods, 2011, 8, S36-S40. Brief Report: Ectopic Expression of Nup98-HoxA10 Augments Erythroid Differentiation of Human Embryonic Stem Cells. Stem Cells, 2011, 29, 736-741.	9.0	34
	Brief Report: Ectopic Expression of Nup98-HoxA10 Augments Erythroid Differentiation of Human		
47	Brief Report: Ectopic Expression of Nup98-HoxA10 Augments Erythroid Differentiation of Human Embryonic Stem Cells. Stem Cells, 2011, 29, 736-741. ID1 and ID3 represent conserved negative regulators of human embryonic and induced pluripotent	1.4	4
47	Brief Report: Ectopic Expression of Nup98-HoxA10 Augments Erythroid Differentiation of Human Embryonic Stem Cells. Stem Cells, 2011, 29, 736-741. ID1 and ID3 represent conserved negative regulators of human embryonic and induced pluripotent stem cell hematopoiesis. Journal of Cell Science, 2011, 124, 1445-1452. Multiparameter comparisons of embryoid body differentiation toward human stem cell applications.	1.4	50
48	Brief Report: Ectopic Expression of Nup98-HoxA10 Augments Erythroid Differentiation of Human Embryonic Stem Cells. Stem Cells, 2011, 29, 736-741. ID1 and ID3 represent conserved negative regulators of human embryonic and induced pluripotent stem cell hematopoiesis. Journal of Cell Science, 2011, 124, 1445-1452. Multiparameter comparisons of embryoid body differentiation toward human stem cell applications. Stem Cell Research, 2010, 5, 120-130. Distinguishing Between Mouse and Human Pluripotent Stem Cell Regulation: The Best Laid Plans of	1.4	50
47 48 49 50	Brief Report: Ectopic Expression of Nup98-HoxA10 Augments Erythroid Differentiation of Human Embryonic Stem Cells. Stem Cells, 2011, 29, 736-741. ID1 and ID3 represent conserved negative regulators of human embryonic and induced pluripotent stem cell hematopoiesis. Journal of Cell Science, 2011, 124, 1445-1452. Multiparameter comparisons of embryoid body differentiation toward human stem cell applications. Stem Cell Research, 2010, 5, 120-130. Distinguishing Between Mouse and Human Pluripotent Stem Cell Regulation: The Best Laid Plans of Mice and Men. Stem Cells, 2010, 28, 419-430. Wnt3a Activates Dormant c-Kitâ^' Bone Marrow-Derived Cells with Short-Term Multilineage	1.4 1.2 0.3	4 50 38 76
47 48 49 50	Brief Report: Ectopic Expression of Nup98-HoxA10 Augments Erythroid Differentiation of Human Embryonic Stem Cells. Stem Cells, 2011, 29, 736-741. ID1 and ID3 represent conserved negative regulators of human embryonic and induced pluripotent stem cell hematopoiesis. Journal of Cell Science, 2011, 124, 1445-1452. Multiparameter comparisons of embryoid body differentiation toward human stem cell applications. Stem Cell Research, 2010, 5, 120-130. Distinguishing Between Mouse and Human Pluripotent Stem Cell Regulation: The Best Laid Plans of Mice and Men. Stem Cells, 2010, 28, 419-430. Wnt3a Activates Dormant c-Kitâr' Bone Marrow-Derived Cells with Short-Term Multilineage Hematopoietic Reconstitution Capacity Â. Stem Cells, 2010, 28, 1379-1389.	1.4 1.2 0.3 1.4	4 50 38 76 24

#	Article	IF	Citations
55	Differential Dependence On Wnt Signaling Allows Chemical Mediated Eradication of Human Acute Leukemia without Affecting Normal Blood Stem Cells. Blood, 2010, 116, 3278-3278.	0.6	4
56	Pluripotent Transcription Factors Possess Distinct Roles in Normal versus Transformed Human Stem Cells. PLoS ONE, 2009, 4, e8065.	1.1	26
57	An Enhanced Mass Spectrometry Approach Reveals Human Embryonic Stem Cell Growth Factors in Culture. Molecular and Cellular Proteomics, 2009, 8, 421-432.	2.5	80
58	Characterization of human embryonic stem cells with features of neoplastic progression. Nature Biotechnology, 2009, 27, 91-97.	9.4	256
59	Noncanonical Wnt Signaling Orchestrates Early Developmental Events toward Hematopoietic Cell Fate from Human Embryonic Stem Cells. Cell Stem Cell, 2009, 4, 248-262.	5.2	83
60	Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. Journal of Molecular Medicine, 2008, 86, 875-886.	1.7	58
61	OP9 Stroma Augments Survival of Hematopoietic Precursors and Progenitors During Hematopoietic Differentiation from Human Embryonic Stem Cells. Stem Cells, 2008, 26, 2485-2495.	1.4	54
62	Human embryonic stem cells: lessons from stem cell niches <i>inÂvivo</i> . Regenerative Medicine, 2008, 3, 365-376.	0.8	26
63	Formation and Hematopoietic Differentiation of Human Embryoid Bodies by Suspension and Hanging Drop Cultures. Current Protocols in Stem Cell Biology, 2007, 3, Unit 1D.2.	3.0	40
64	Hematopoietic Development from Human Embryonic Stem Cells. Hematology American Society of Hematology Education Program, 2007, 2007, 11-16.	0.9	16
65	IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 2007, 448, 1015-1021.	13.7	552
66	Hematopoiesis from Human Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106, 219-222.	1.8	10
67	Derivation and Characterization of Hematopoietic Cells From Human Embryonic Stem Cells. , 2006, 331, 179-200.		13
68	Hematopoietic stem cell biology: too much of a Wnt thing. Nature Immunology, 2006, 7, 1021-1023.	7.0	34
69	Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nature Medicine, 2006, 12, 89-98.	15.2	235
70	Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nature Methods, 2006, 3, 807-815.	9.0	155
71	Smad7 alters cell fate decisions of human hematopoietic repopulating cells. Blood, 2005, 105, 1905-1915.	0.6	50
72	Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 2005, 105, 4598-4603.	0.6	165

#	Article	IF	CITATIONS
73	Hematopoietic development from human embryonic stem cell lines. Experimental Hematology, 2005, 33, 987-996.	0.2	68
74	Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. Journal of Experimental Medicine, 2005, 201, 1603-1614.	4.2	290
75	Analysis of the Human Fetal Liver Hematopoietic Microenvironment. Stem Cells and Development, 2005, 14, 493-504.	1.1	71
76	Hierarchical and Ontogenic Positions Serve to Define the Molecular Basis of Human Hematopoietic Stem Cell Behavior. Developmental Cell, 2005, 8, 651-663.	3.1	62
77	Retroviral transduction of hematopoietic cells differentiated from human embryonic stem cell-derived CD45negPFV hemogenic precursors. Molecular Therapy, 2004, 10, 1109-1120.	3.7	49
78	Endothelial and Hematopoietic Cell Fate of Human Embryonic Stem Cells Originates from Primitive Endothelium with Hemangioblastic Properties. Immunity, 2004, 21, 31-41.	6.6	353
79	VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood, 2004, 103, 2504-2512.	0.6	147
80	Bone marrow–derived stem cells initiate pancreatic regeneration. Nature Biotechnology, 2003, 21, 763-770.	9.4	572
81	Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3422-3427.	3.3	208
82	Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 2003, 102, 906-915.	0.6	563
83	Functional analysis of human hematopoietic repopulating cells mobilized with granulocyte colony-stimulating factor alone versus granulocyte colony-stimulating factor in combination with stem cell factor. Blood, 2002, 100, 869-878.	0.6	49
84	Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood, 2001, 97, 1960-1967.	0.6	176
85	The Notch Ligand Jagged-1 Represents a Novel Growth Factor of Human Hematopoietic Stem Cells. Journal of Experimental Medicine, 2000, 192, 1365-1372.	4.2	395
86	A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nature Medicine, 1998, 4, 1038-1045.	15.2	595
87	Quantitative Analysis Reveals Expansion of Human Hematopoietic Repopulating Cells After Short-term Ex Vivo Culture. Journal of Experimental Medicine, 1997, 186, 619-624.	4.2	394
88	Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells, 1997, 15, 199-207.	1.4	174
89	Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nature Medicine, 1996, 2, 1329-1337.	15.2	765
90	Part F: Directed Differentiation of Human Embryonic Stem Cells into Myeloid Cells., 0,, 299-325.		0