Péter Kun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6847340/publications.pdf

Version: 2024-02-01

		1040056	1125743	
15	656	9	13	
papers	citations	h-index	g-index	
15	15	15	781	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	In situ tuning of symmetry-breaking-induced nonreciprocity in the giant-Rashba semiconductor BiTeBr. Physical Review Research, 2021, 3, .	3.6	1
2	Robust quantum point contact operation of narrow graphene constrictions patterned by AFM cleavage lithography. Npj 2D Materials and Applications, 2020, 4, .	7.9	10
3	Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. Npj 2D Materials and Applications, $2019, 3, .$	7.9	16
4	Exfoliation of single layer BiTel flakes. 2D Materials, 2018, 5, 031013.	4.4	34
5	Dynamic strain in gold nanoparticle supported graphene induced by focused laser irradiation. Nanoscale, 2018, 10, 13417-13425.	5.6	3
6	Highly wear-resistant and low-friction Si3N4 composites by addition of graphene nanoplatelets approaching the 2D limit. Scientific Reports, 2017, 7, 10087.	3.3	33
7	Infiltration Characteristics and Compressive Behaviour of Metal Matrix Syntactic Foams. Materials Science Forum, 2012, 729, 68-73.	0.3	6
8	Preparation and Characterization of Multilayer Graphene by Mechanical Milling and Related Applications for Ceramic Composites. Materials Science Forum, 2012, 729, 252-259.	0.3	1
9	Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites. Ceramics International, 2012, 38, 211-216.	4.8	127
10	Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Materialia, 2012, 66, 793-796.	5.2	191
11	Microstructure and fracture toughness of Si3N4+graphene platelet composites. Journal of the European Ceramic Society, 2012, 32, 3389-3397.	5.7	151
12	Silicon nitride based nanocomposites produced by two different sintering methods. Ceramics International, 2011, 37, 3457-3461.	4.8	37
13	Preparation and examination of multilayer graphene nanosheets by exfoliation of graphite in high efficient attritor mill. Open Chemistry, 2011, 9, 47-51.	1.9	28
14	Wear Behavior of ZrO ₂ -CNF and Si ₃ N ₄ -CNT Nanocomposites. Key Engineering Materials, 0, 465, 495-498.	0.4	16
15	Structural and Mechanical Properties of Milled Si _{/CNTs Composites by Spark Plasma Sintering Method. Materials Science Forum, 0, 729, 31-36.}	0.3	2