Lei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6847242/publications.pdf

Version: 2024-02-01

		361296	182361
55	5,148	20	51
papers	citations	h-index	g-index
			2502
55	55	55	2502
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-adaptive near-filed thermal stabilizer. International Journal of Heat and Mass Transfer, 2022, 191, 122824.	2.5	2
2	Correlation functions and their universal connection during an extremely slow equilibration process. Physical Review E, 2022, 105, .	0.8	2
3	Projective-truncation-approximation study of the one-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>i•</mml:mi><mml:mn>4</mml:mn> lattice model. Physical Review E, 2022, 106, .</mml:msup></mml:math>	<i>⊲</i> nsml:ms	ւ <mark>ա</mark> >
4	Computation and data driven discovery of topological phononic materials. Nature Communications, 2021, 12, 1204.	5.8	98
5	Heat current flows across an interface in two-dimensional lattices. Physical Review E, 2021, 103, 052141.	0.8	1
6	Tailoring the thermal transport properties of monolayer hexagonal boron nitride by grain size engineering. 2D Materials, 2020, 7, 015031.	2.0	21
7	Green-Kubo algorithm in the calculation of anomalous heat conduction for models with and without sound mode. European Physical Journal B, 2020, 93, 1.	0.6	3
8	Long-range correlation and predictability of Chinese stock prices. Physica A: Statistical Mechanics and Its Applications, 2020, 549, 124384.	1.2	6
9	Switchability and controllability of a thermal transistor. Physical Review Research, 2020, 2, .	1.3	10
10	Validity of local thermal equilibrium in anomalous heat diffusion. New Journal of Physics, 2019, 21, 083019.	1.2	6
11	Mechanism of large tunable thermal transport in graphene with oxygen functional groups. Journal of Applied Physics, 2018, 124, 175108.	1.1	4
12	Scaling property of the heat-current flows across a weak interface. Physical Review E, 2018, 98, .	0.8	2
13	Average number of fixed points and attractors in Hopfield neural networks. International Journal of Modern Physics C, 2018, 29, 1850076.	0.8	1
14	Resonance phonon approach to phonon relaxation time and mean free path in one-dimensional nonlinear lattices. Physical Review E, 2017, 95, 042138.	0.8	8
15	Response and correlation functions of nonlinear systems in equilibrium states. Physical Review E, 2017, 96, 052139.	0.8	8
16	Dispersion and absorption in one-dimensional nonlinear lattices: A resonance phonon approach. Physical Review E, 2016, 94, 030101.	0.8	8
17	Simulation of Heat Transport in Low-Dimensional Oscillator Lattices. Lecture Notes in Physics, 2016, , 239-274.	0.3	2
18	Super heat diffusion in one-dimensional momentum-conserving nonlinear lattices. Physical Review E, 2015, 91, 062130.	0.8	18

#	Article	IF	Citations
19	Deviation from the Maxwell-Cattaneo law: Role of asymmetric interparticle interactions. Physical Review E, 2015, 92, 042136.	0.8	2
20	Heat-current correlation loss induced by finite-size effects in a one-dimensional nonlinear lattice. Physical Review E, 2015, 91, 012110.	0.8	14
21	Heat and particle transport in a one-dimensional hard-point gas model with on-site potential. AIP Advances, 2015, 5, 053201.	0.6	1
22	Frequency response of a thermal diode. Physical Review E, 2014, 89, 012119.	0.8	5
23	Validity of Fourier's law in one-dimensional momentum-conserving lattices with asymmetric interparticle interactions. Physical Review E, 2013, 88, 052112.	0.8	61
24	Dual Fractal Dimension and Long-Range Correlation of Chinese Stock Prices. Journal of the Physical Society of Japan, 2012, 81, 034801.	0.7	4
25	Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices. Physical Review E, 2012, 86, 040101.	0.8	63
26	<i>Colloquium</i> : Phononics: Manipulating heat flow with electronic analogs and beyond. Reviews of Modern Physics, 2012, 84, 1045-1066.	16.4	1,106
27	Heat current limiter and constant heat current source. Physical Review E, 2012, 85, 061112.	0.8	18
28	Power-law divergent heat conductivity in one-dimensional momentum-conserving nonlinear lattices. Europhysics Letters, 2011, 93, 54002.	0.7	51
29	Thermal diode from two-dimensional asymmetrical Ising lattices. Physical Review E, 2011, 83, 061128.	0.8	12
30	Heat Conduction in a Three-Dimensional Momentum-Conserving Anharmonic Lattice. Physical Review Letters, 2010, 105, 160601.	2.9	29
31	Phononics: A New Science and Technology of Controlling Heat Flow and Processing Information by Phonons. , 2010, , .		2
32	A one-dimensional hard-point gas and thermoelectric efficiency. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, L03004.	0.9	17
33	Thermal Memory: A Storage of Phononic Information. Physical Review Letters, 2008, 101, 267203.	2.9	357
34	Thermal Transistor: Heat Flux Switching and Modulating. Journal of the Physical Society of Japan, 2008, 77, 054402.	0.7	91
35	Phononics gets hot. Physics World, 2008, 21, 27-29.	0.0	143
36	HEAT SWITCH AND MODULATOR: A MODEL OF THERMAL TRANSISTOR. International Journal of Modern Physics B, 2007, 21, 4017-4020.	1.0	4

#	Article	IF	Citations
37	INTERFACE THERMAL RESISTANCE BETWEEN FRENKEL-KONTOROVA AND FERMI-PASTA-ULAM LATTICES. International Journal of Modern Physics B, 2007, 21, 4013-4016.	1.0	17
38	Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Physical Review B, 2007, 76, .	1.1	242
39	Thermal Logic Gates: Computation with Phonons. Physical Review Letters, 2007, 99, 177208.	2.9	542
40	Ratchet Effect and the Transporting Islands in the Chaotic Sea. Physical Review Letters, 2007, 99, 244101.	2.9	26
41	Negative differential thermal resistance and thermal transistor. Applied Physics Letters, 2006, 88, 143501.	1.5	525
42	Reduction of thermal conductivity of anharmonic lattices. Physical Review B, 2006, 74, .	1.1	10
43	Nonequilibrium properties of the one-dimensional hard-point gas system. Physical Review E, 2006, 74, 037201.	0.8	0
44	Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. Chaos, 2005, 15, 015121.	1.0	95
45	Interface Thermal Resistance between Dissimilar Anharmonic Lattices. Physical Review Letters, 2005, 95, 104302.	2.9	361
46	Thermal Diode: Rectification of Heat Flux. Physical Review Letters, 2004, 93, 184301.	2.9	930
47	Traffic Flow CA Model in Which Only the Cars Following the Trail of the Ahead Car Can Be Delayed. International Journal of Nonlinear Sciences and Numerical Simulation, 2003, 4, .	0.4	4
48	Comment on "Finite Heat Conduction in a 2D Disorder Lattice― Physical Review Letters, 2003, 90, 119401; author reply 119402.	2.9	6
49	Finite Thermal Conductivity in 1D Models Having Zero Lyapunov Exponents. Physical Review Letters, 2002, 88, 223901.	2.9	92
50	Cellular automaton traffic flow model between the Fukui-Ishibashi and Nagel-Schreckenberg models. Physical Review E, 2001, 63, 056117.	0.8	29
51	The asymptotic steady states of deterministic one-dimensional traffic flow models. Physica B: Condensed Matter, 2000, 279, 237-239.	1.3	18
52	Cellular Automaton Model for One Dimensional Traffic Flow with Gradual Acceleration and Stochastic Delay: Analytical Approach. International Journal of Nonlinear Sciences and Numerical Simulation, 2000, 1 , .	0.4	4
53	Analytical results for the steady state of traffic flow models with stochastic delay. Physical Review E, 1998, 58, 2876-2882.	0.8	41
54	Strict derivation of mean field equation for one-dimensional traffic flow model. Acta Physica Sinica (overseas Edition), 1997, 6, 829-836.	0.1	5

#	Article	IF	CITATIONS
55	One-Dimensional Fukui-Ishibashi Traffic Flow Model. Journal of the Physical Society of Japan, 1997, 66, 3683-3684.	0.7	21