

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6847184/publications.pdf Version: 2024-02-01

Υπ Ζησ

#	Article	IF	CITATIONS
1	Electrochemical impedance spectroscopy characteristic of degradation process for carbon fiber/vinyl ester composites in salt water. Journal of Composite Materials, 2022, 56, 1299-1312.	1.2	5
2	Influence of organic and inorganic cerium salts on the protective performance of epoxy coating. Progress in Organic Coatings, 2022, 166, 106763.	1.9	6
3	Effect of HAc on the Metastable Pitting Corrosion of 304 SS in NaCl Solution. Materials, 2022, 15, 3618.	1.3	2
4	Comparative study on the degradation of a zinc-rich epoxy primer/acrylic polyurethane coating in different simulated atmospheric solutions. Journal of Coatings Technology Research, 2021, 18, 397-413.	1.2	12
5	Degradation of zinc-rich epoxy coating in 3.5% NaCl solution and evolution of its EIS parameters. Journal of Coatings Technology Research, 2021, 18, 843-860.	1.2	18
6	Improvement of Corrosion Resistance of TiO2 Layers in Strong Acidic Solutions by Anodizing and Thermal Oxidation Treatment. Materials, 2021, 14, 1188.	1.3	7
7	Strengthened passivation and mechanism of 316L stainless steel in hot diluted sulfuric acid solution by connecting to Pd electrode. Anti-Corrosion Methods and Materials, 2021, 68, 248-254.	0.6	1
8	The pore structure and properties of microarc oxidation films on 2024 aluminum alloy prepared in electrolytes with oxide nanoparticles. Journal of Alloys and Compounds, 2020, 816, 152520.	2.8	10
9	Correlation research of phase angle variation and coating performance by means of Pearson's correlation coefficient. Progress in Organic Coatings, 2020, 139, 105459.	1.9	47
10	Study on Synergistic Corrosion Inhibition Effect between Calcium Lignosulfonate (CLS) and Inorganic Inhibitors on Q235 Carbon Steel in Alkaline Environment with Clâ^'. Molecules, 2020, 25, 4200.	1.7	20
11	The enhanced properties of anodic films on AZ91D magnesium alloy by addition of oxide nanoparticles. Journal of Alloys and Compounds, 2020, 834, 155041.	2.8	11
12	Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments. Corrosion Science, 2020, 174, 108818.	3.0	17
13	The influence of hydrofluoric acid doped polyaniline on the protective performance of a mg-rich epoxy coating on AZ91D magnesium alloy. Progress in Organic Coatings, 2020, 141, 105550.	1.9	8
14	Revealing the erosion-corrosion performance of sphere-shaped morphology of nickel matrix nanocomposite strengthened with reduced graphene oxide nanoplatelets. Diamond and Related Materials, 2020, 104, 107763.	1.8	91
15	The Improvement of Hardness and Corrosion Resistance of Electroplated Pd-Ni Film on 316L Stainless Steel by CeCl3. Coatings, 2020, 10, 161.	1.2	9
16	Corrosion Behaviour of 316L Stainless Steel in Hot Dilute Sulphuric Acid Solution with Sulphate and NaCl. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 148-156.	0.3	4
17	Inhibition of Q235 Carbon Steel by Calcium Lignosulfonate and Sodium Molybdate in Carbonated Concrete Pore Solution. Molecules, 2019, 24, 518.	1.7	22
18	Effects of pore parameters on performance of anodic film on 2024 aluminum alloy. Materials Chemistry and Physics, 2019, 231, 9-20.	2.0	36

#	Article	IF	CITATIONS
19	Relationship between porosity, pore parameters and properties of microarc oxidation film on AZ91D magnesium alloy. Results in Physics, 2019, 12, 2044-2054.	2.0	23
20	Corrosion inhibition of carboxylate inhibitors with different alkylene chain lengths on carbon steel in an alkaline solution. RSC Advances, 2019, 9, 7065-7077.	1.7	51
21	Effect of aluminum Tripolyphosphate on pitting initiation on carbon steel in chloride contaminated concrete pore solution. Anti-Corrosion Methods and Materials, 2019, 66, 603-612.	0.6	5
22	Integrated sulfur- and iron-based autotrophic denitrification process and microbial profiling in an	4.2	25
23	Corrosion resistance mechanism of palladium film-plated stainless steel in boiling H 2 SO 4 solution. Corrosion Science, 2018, 135, 222-232.	3.0	14
24	Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: Manipulating the Effect of Deposition Current Density on its Morphology, Mechanical Properties, and Erosionâ€Corrosion Performance. Advanced Engineering Materials, 2018, 20, 1701166.	1.6	182
25	Inhibition effect and mechanism of sodium oleate on passivation and pitting corrosion of steel in simulated concrete pore solution. Construction and Building Materials, 2018, 167, 197-204.	3.2	27
26	Microstructure and corrosion resistance of a fluorosilane modified silane-graphene film on 2024 aluminum alloy. Applied Surface Science, 2018, 437, 152-160.	3.1	36
27	Synthesis of spheres-like Ni/graphene nanocomposite as an efficient anti-corrosive coating; effect of graphene content on its morphology and mechanical properties. Journal of Alloys and Compounds, 2018, 755, 79-88.	2.8	96
28	Preparation of Ti–Zr-Based Conversion Coating on 5052 Aluminum Alloy, and Its Corrosion Resistance and Antifouling Performance. Coatings, 2018, 8, 397.	1.2	16
29	Effect of surfactant concentration in electrolyte on the fabrication and properties of nickel-graphene nanocomposite coating synthesized by electrochemical co-deposition. RSC Advances, 2018, 8, 20039-20047.	1.7	77
30	Electrodeposition of a Pd-Ni/TiO2 Composite Coating on 316L SS and Its Corrosion Behavior in Hot Sulfuric Acid Solution. Coatings, 2018, 8, 182.	1.2	9
31	The adsorption and inhibition behavior of two organic inhibitors for carbon steel in simulated concrete pore solution. Corrosion Science, 2017, 118, 24-30.	3.0	50
32	The compounded inhibition of sodium molybdate and benzotriazole on pitting corrosion of Q235 steel in NaClÂ+ÂNaHCO 3 solution. Materials Chemistry and Physics, 2017, 192, 86-93.	2.0	50
33	The effects of thioureido imidazoline and NaNO 2 on passivation and pitting corrosion of X70 steel in acidic NaCl solution. Corrosion Science, 2017, 120, 99-106.	3.0	42
34	Preparation and characterization of a GPTMS/graphene coating on AA-2024 alloy. Applied Surface Science, 2017, 416, 492-502.	3.1	44
35	Preparation and performance of a Pd-Co gradient coating on stainless steel. Surface and Coatings Technology, 2017, 330, 249-254.	2.2	7
36	Electrodeposition of multi-layer Pd–Ni coatings on 316L stainless steel and their corrosion resistance in hot sulfuric acid solution. Transactions of Nonferrous Metals Society of China, 2017, 27, 1543-1550.	1.7	7

#	Article	IF	CITATIONS
37	Influence of the C-S-H amount on [Cl-]/[OH-] ratio of simulated concrete SPS and the corrosion susceptibility of steel. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 430-436.	0.4	3
38	Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation. Progress in Organic Coatings, 2017, 104, 188-198.	1.9	46
39	Inhibition of AA 2024-T3 Corrosion in Alkaline NaCl Solution by Compound Sodium Dodecylbenzenesulfonate and Cerium Chloride. International Journal of Electrochemical Science, 2017, 12, 11137-11149.	0.5	6
40	Correlation between natural exposure and artificial ageing test for typical marine coating systems. Journal of Applied Polymer Science, 2016, 133, .	1.3	10
41	The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution. Applied Surface Science, 2016, 379, 98-110.	3.1	47
42	The effect of deformation on metastable pitting of 304 stainless steel in chloride contaminated concrete pore solution. Corrosion Science, 2016, 103, 223-229.	3.0	111
43	Erosion-corrosion behavior of Pd–Co and Pd–Cu films on 316L stainless steel in simulated PTA slurry environment. Transactions of Nonferrous Metals Society of China, 2016, 26, 167-174.	1.7	6
44	Electrochemical study the corrosion behaviour of carbon steel in mortars under compressive and tensile stresses. Corrosion Science, 2016, 103, 66-74.	3.0	51
45	Failure process of acrylic polyurethane coating under alternate wetting and drying condition. Journal of Applied Polymer Science, 2015, 132, .	1.3	10
46	The Inhibition of Sodium Oleate for Pitting Corrosion of Aluminum Alloy 2024 in 0.1 mol L-1NaCl Solution. Journal of the Brazilian Chemical Society, 2015, , .	0.6	3
47	The Intergranular Corrosion of Mild Steel in CO 2 + NaNO 2 Solution. Electrochimica Acta, 2015, 154, 157-165.	2.6	19
48	Erosion–corrosion resistance of electroplated Co-Pd film on 316L stainless steel in a hot sulfuric acid slurry environment. Applied Surface Science, 2015, 331, 200-209.	3.1	17
49	Tensile strength and oxide analysis of carbon steel in concrete exposed in atmospheric environment for 53 years. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 790-795.	0.4	2
50	Electrodeposited Pd-Ni-Mo film as a cathode material for hydrogen evolution reaction. Electrochimica Acta, 2015, 174, 1041-1049.	2.6	69
51	The inhibitive mechanisms of nitrite and molybdate anions on initiation and propagation of pitting corrosion for mild steel in chloride solution. Applied Surface Science, 2015, 353, 924-932.	3.1	67
52	Evaluation of the micro-arc oxidation treatment effect on the protective performance of a Mg-rich epoxy coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2015, 270, 227-235.	2.2	44
53	Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors. Applied Surface Science, 2015, 357, 735-744.	3.1	38
54	Correlation between microhardness and microstructure of anodic film on 2024 aluminum alloy. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 586-590.	0.4	8

#	Article	IF	CITATIONS
55	The Passivation Behavior of Mild Steel in CO ₂ Saturated Solution Containing Nitrite Anions. Journal of the Electrochemical Society, 2015, 162, C47-C54.	1.3	18
56	The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions. Corrosion Science, 2014, 80, 111-119.	3.0	113
57	The improved performance of Mg-rich epoxy primer on AZ91D magnesium alloy by addition of ZnO. Corrosion Science, 2014, 87, 167-178.	3.0	45
58	The electroplated Pd–Co alloy film on 316L stainless steel and the corrosion resistance in boiling acetic acid and formic acid mixture with stirring. Applied Surface Science, 2014, 321, 179-187.	3.1	14
59	The adsorbing effect of calcined layered double hydroxide for chloride ions in simulated concrete pore solutions. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 278-283.	0.4	11
60	The passive behaviour of 304 stainless steels in saturated calcium hydroxide solution under different deformation. Corrosion Science, 2014, 82, 347-355.	3.0	70
61	The characteristics of a Pd–Ni/Pd–Cu double coating on 316L stainless steel and the corrosion resistance in stirred boiling acetic and formic acids mixture. Materials Chemistry and Physics, 2014, 144, 263-271.	2.0	13
62	Phosphatizing of Mg particles to improve the protective performance of Mg-rich primer on A2024 Al alloy. Applied Surface Science, 2014, 292, 93-99.	3.1	4
63	The Influence of Plastic Deformation on the Structure of Passive Films on Carbon Steel in Simulated Pore Solution. Journal of the Brazilian Chemical Society, 2014, , .	0.6	1
64	Improvement of bonding strength of AZ31B magnesium alloy by anodizing and chromium-free conversion treatments. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 808-812.	0.4	1
65	The effects of 8-hydroxyquinoline on corrosion performance of a Mg-rich coating on AZ91D magnesium alloy. Corrosion Science, 2013, 76, 275-283.	3.0	69
66	The influence of aluminum tri-polyphosphate on the protective behavior of Mg-rich epoxy coating on AZ91D magnesium alloy. Electrochimica Acta, 2013, 93, 53-64.	2.6	50
67	The enhanced passivation of 316L stainless steel in a simulated fuel cell environment by surface plating with palladium. Corrosion Science, 2013, 66, 330-336.	3.0	33
68	Corrosion behaviour of 316L stainless steel in PTA slurry. Corrosion Engineering Science and Technology, 2013, 48, 207-210.	0.7	2
69	Composition and corrosion resistance of palladium film on 316L stainless steel by brush plating. Transactions of Nonferrous Metals Society of China, 2012, 22, 97-103.	1.7	12
70	The improved performance of a Mg-rich epoxy coating on AZ91D magnesium alloy by silane pretreatment. Corrosion Science, 2012, 60, 165-172.	3.0	93
71	The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films. Applied Surface Science, 2012, 261, 193-200.	3.1	35
72	The influence of strain on the passive behavior of carbon steel in cement extract. Corrosion Science, 2012, 65, 542-548.	3.0	55

#	Article	IF	CITATIONS
73	The influence of Ce(NO3)3·6H2O on the inhibitive effect of Ca(NO2)2 in simulated concrete pore solution. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 994-998.	0.4	7
74	Preparation and properties of Al-Ni composite anodic films on aluminum surface. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 242-246.	0.4	3
75	The inhibition effects of several inhibitors on rebar in acidified concrete pore solution. Construction and Building Materials, 2012, 28, 327-332.	3.2	52
76	Corrosion behavior of steel in simulated concrete pore solutions treated with calcium silicate hydrates. Construction and Building Materials, 2012, 30, 252-256.	3.2	37
77	The preparation and characteristics of a rare earth/nano-TiO2 composite coating on aluminum alloy by brush plating. Surface and Coatings Technology, 2012, 206, 3264-3269.	2.2	24
78	The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy. Corrosion Science, 2011, 53, 153-160.	3.0	61
79	Influence of stress on passive behaviour of steel bars in concrete pore solution. Corrosion Science, 2011, 53, 1304-1311.	3.0	77
80	Chromium–palladium films on 316L stainless steel by pulse electrodeposition and their corrosion resistance in hot sulfuric acid solutions. Corrosion Science, 2011, 53, 3788-3795.	3.0	30
81	The degradation of passive film on carbon steel in concrete pore solution under compressive and tensile stresses. Electrochimica Acta, 2011, 58, 258-263.	2.6	53
82	Electrocatalytic evolution of hydrogen on the NiCu/Al2O3/nano-carbon network composite electrode. Journal of Materials Science, 2011, 46, 4630-4637.	1.7	14
83	The failure behavior of a polyurethane composite coating in 3.5% NaCl solution under ultraviolet irradiation. Journal of Applied Polymer Science, 2011, 120, 1892-1898.	1.3	4
84	A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating. Applied Surface Science, 2011, 257, 2806-2812.	3.1	46
85	The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment. Surface and Coatings Technology, 2010, 205, 1789-1792.	2.2	90
86	EIS study on failure process of two polyurethane composite coatings. Progress in Organic Coatings, 2010, 69, 7-11.	1.9	61
87	The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum. Materials Chemistry and Physics, 2010, 120, 676-681.	2.0	13
88	The preparation of corrosion resistant palladium films on 316L stainless steel by brush plating. Surface and Coatings Technology, 2010, 204, 1637-1645.	2.2	8
89	Corrosion behaviors of Ce―and Ndâ€modified anodic films on aluminum. Anti-Corrosion Methods and Materials, 2010, 57, 238-243.	0.6	7
90	Study on corrosion electrochemical behavior of several different coating systems by EIS. Progress in Organic Coatings, 2009, 64, 497-503.	1.9	292

#	Article	IF	CITATIONS
91	The electrochemical characteristics of pitting for two steels in phosphate buffer solution with chloride. Materials Chemistry and Physics, 2009, 116, 484-488.	2.0	12
92	Hydroxyapatite Coatings on Titanium Prepared by Electrodeposition in a Modified Simulated Body Fluid. Chinese Journal of Chemical Engineering, 2009, 17, 667-671.	1.7	43
93	Bonding properties between nitrile-butadiene rubber and aluminum alloy treated by anodizing methods. Journal of Applied Polymer Science, 2009, 112, 283-289.	1.3	2
94	Improvement of surface and moisture resistance of epoxy resins with fluorinated glycidyl ether. Journal of Applied Polymer Science, 2009, 114, 2528-2532.	1.3	12
95	The effects of sealing on cracking tendency of anodic films on 2024 aluminum alloy after heating up to 300°C. Surface and Coatings Technology, 2009, 203, 1244-1251.	2.2	17
96	The electroplated palladium–copper alloy film on 316L stainless steel and its corrosion resistance in mixture of acetic and formic acids. Corrosion Science, 2009, 51, 1822-1827.	3.0	25
97	The cracking behaviors of anodic films on 1050 and 2024 aluminum alloys after heating up to 300°C. Journal of Alloys and Compounds, 2009, 479, 473-479.	2.8	12
98	(Z)-1-[(3-Cyanophenyl)iminiomethyl]-2-naphtholate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1477-o1477.	0.2	2
99	3-[(3,5-Di-tert-butyl-2-hydroxybenzylidene)methyleneamino]benzonitrile. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1141-o1141.	0.2	0
100	The effects of electrodeposition current density on properties of Ni–CNTs composite coatings. Surface and Coatings Technology, 2008, 202, 3246-3250.	2.2	79
101	Effects of dispersants on dispersion of carbon nanotubes and properties of fluorocarbon resin nanocomposites. Journal of Materials Science, 2008, 43, 3738-3741.	1.7	10
102	The improvement of corrosion resistance of Ce conversion films on aluminum alloy by phosphate post-treatment. Applied Surface Science, 2008, 254, 4930-4935.	3.1	61
103	The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surface and Coatings Technology, 2008, 202, 3149-3156.	2.2	86
104	Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings. Surface and Coatings Technology, 2008, 202, 3385-3390.	2.2	109
105	The cracking behavior of anodic films on cast aluminum alloy after heating in the temperature range up to 300ÅA°C. Surface and Coatings Technology, 2008, 202, 4183-4188.	2.2	10
106	An electroless plating film of palladium on 304 stainless steel and its excellent corrosion resistance. Thin Solid Films, 2008, 516, 7565-7570.	0.8	21
107	Study on corrosion resistance of palladium films on 316L stainless steel by electroplating and electroless plating. Corrosion Science, 2008, 50, 2873-2878.	3.0	50
108	The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corrosion Science, 2008, 50, 3322-3328.	3.0	144

#	Article	IF	CITATIONS
109	The metastable pitting behaviors of mild steel in bicarbonate and nitrite solutions containing Clâ^. Corrosion Science, 2008, 50, 989-994.	3.0	34
110	The effects of pulse–reverse parameters on the properties of Ni–carbon nanotubes composite coatings. Surface and Coatings Technology, 2007, 201, 9491-9496.	2.2	34
111	The electrochemical behavior of anodic alumina films implanted with Ni ions. Materials Chemistry and Physics, 2007, 104, 24-29.	2.0	10
112	Electrochemical behaviors of anodic alumina sealed by Ce-Mo in NaCl solutions. Transactions of Nonferrous Metals Society of China, 2006, 16, 1178-1183.	1.7	5
113	A study on the self-sealing process of anodic films on aluminum by EIS. Surface and Coatings Technology, 2006, 200, 6846-6853.	2.2	68
114	The improved corrosion resistance of anodic films on aluminum by nickel ions implantation. Surface and Coatings Technology, 2006, 201, 3246-3252.	2.2	7
115	Electrochemical Properties of Anodized and Sealed Aluminum Films. Advanced Materials Research, 2006, 11-12, 433-436.	0.3	1
116	Formation of Anticorrosion Clusters on Anodic Alumina Films by Ni Ion Implantation. Advanced Materials Research, 2006, 11-12, 89-94.	0.3	0
117	Introduction of Li ⁺ Ions into Anodic Film by Hydrotalcite Precursor and Electrochemical Behavior. Advanced Materials Research, 2006, 11-12, 509-512.	0.3	1
118	The current fluctuations and accumulated pitting damage of mild steel in NaNO2–NaCl solution. Applied Surface Science, 2005, 243, 82-88.	3.1	18
119	The growth mechanism of pits in NaCl solution under anodic films on aluminum. Surface and Coatings Technology, 2005, 191, 311-316.	2.2	18
120	Identification of Two Critical Amino Acid Residues of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Its Variation in Zoonotic Tropism Transition via a Double Substitution Strategy. Journal of Biological Chemistry, 2005, 280, 29588-29595.	1.6	152
121	The metastable pitting of mild steel in bicarbonate solutions. Materials Chemistry and Physics, 2004, 88, 221-226.	2.0	37
122	Study of electrochemical behavior and morphology of pitting on anodized 2024 aluminum alloy. Surface and Coatings Technology, 2004, 182, 237-241.	2.2	25
123	The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions. Surface and Coatings Technology, 2003, 166, 237-242.	2.2	149
124	The aspect ratio of surface grooves and metastable pitting of stainless steel. Corrosion Science, 2002, 44, 25-35.	3.0	88
125	The effects of some anions on metastable pitting of 316L stainless steel. Corrosion Science, 2002, 44, 13-24.	3.0	103
126	Hydrogen embrittlement fracture of notched amorphous Ni alloy specimens. Journal of Materials Science Letters, 1997, 16, 729-731.	0.5	1

#	Article	IF	CITATIONS
127	The pitting corrosion of amorphous Ni63Cr12.5Fe4Si8B12.5 alloy in chloride solution. Corrosion Science, 1993, 34, 1697-1706.	3.0	7
128	Corrosion behaviour of a steel surface laser alloyed with chromium borides. Journal of Materials Science, 1992, 27, 3014-3020.	1.7	10
129	Environment-induced cracking of two nickel base amorphous alloys in acidic chloride solutions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 159, 87-94.	2.6	4
130	The Structure and Composition of Corrosion Product Film and its Relation to Corrosion Rate for Carbon Steels in CO2 Saturated Solutions at Different Temperatures. Journal of the Brazilian Chemical Society, 0, , .	0.6	8