
Danuta S Kalinowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6847177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ascorbate and Tumor Cell Iron Metabolism: The Evolving Story and Its Link to Pathology. Antioxidants and Redox Signaling, 2020, 33, 816-838.	2.5	3
2	The growing evidence for targeting P-glycoprotein in lysosomes to overcome resistance. Future Medicinal Chemistry, 2020, 12, 473-477.	1.1	16
3	The potential of the novel NAD+ supplementing agent, SNH6, as a therapeutic strategy for the treatment of Friedreich's ataxia. Pharmacological Research, 2020, 155, 104680.	3.1	6
4	Synthesis, Characterization, and in Vitro Anticancer Activity of Copper and Zinc Bis(Thiosemicarbazone) Complexes. Inorganic Chemistry, 2019, 58, 13709-13723.	1.9	78
5	The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-26.	1.9	92
6	Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Current Medicinal Chemistry, 2019, 26, 302-322.	1.2	19
7	Tumor-induced neoangiogenesis and receptor tyrosine kinases – Mechanisms and strategies for acquired resistance. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1217-1225.	1.1	9
8	Novel SPME fibers based on a plastic support for determination of plasma protein binding of thiosemicarbazone metal chelators: a case example of DpC, an anti-cancer drug that entered clinical trials. Analytical and Bioanalytical Chemistry, 2019, 411, 2383-2394.	1.9	5
9	Identification of differential phosphorylation and sub-cellular localization of the metastasis suppressor, NDRG1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2644-2663.	1.8	36
10	Novel chelators based on adamantane-derived semicarbazones and hydrazones that target multiple hallmarks of Alzheimer's disease. Dalton Transactions, 2018, 47, 7190-7205.	1.6	30
11	Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochemistry International, 2018, 117, 35-48.	1.9	38
12	Novel Thiosemicarbazones Inhibit Lysine-Rich Carcinoembryonic Antigen–Related Cell Adhesion Molecule 1 (CEACAM1) Coisolated (LYRIC) and the LYRIC-Induced Epithelial-Mesenchymal Transition via Upregulation of N-Myc Downstream-Regulated Gene 1 (NDRG1). Molecular Pharmacology, 2017, 91, 499-517.	1.0	22
13	A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 139, 612-632.	2.6	64
14	Letter to the Editor: "Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques― International Journal of Molecular Sciences, 2016, 17, 1916.	1.8	3
15	Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacological Reviews, 2016, 68, 701-787.	7.1	537
16	Targeting autophagy in antitumor agent design: furthering the â€~lysosomal love' strategy. Future Medicinal Chemistry, 2016, 8, 727-729.	1.1	0
17	Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase. Biochemical Pharmacology, 2016, 109, 27-47.	2.0	36
18	Zinc(II)–Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity. Journal of Medicinal Chemistry, 2016, 59, 4965-4984.	2.9	148

#	Article	IF	CITATIONS
19	Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clinical Science, 2016, 130, 853-870.	1.8	45
20	Structure–Activity Relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-Acetylpyridine Thiosemicarbazones for Overcoming Pgp-Mediated Drug Resistance. Journal of Medicinal Chemistry, 2016, 59, 8601-8620.	2.9	82
21	The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. Journal of Hematology and Oncology, 2016, 9, 98.	6.9	94
22	Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1665-1681.	1.9	34
23	Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics, 2016, 8, 874-886.	1.0	105
24	The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways. Journal of Biological Chemistry, 2016, 291, 1029-1052.	1.6	65
25	Novel Mechanism of Cytotoxicity for the Selective Selenosemicarbazone, 2-Acetylpyridine 4,4-Dimethyl-3-selenosemicarbazone (Ap44mSe): Lysosomal Membrane Permeabilization. Journal of Medicinal Chemistry, 2016, 59, 294-312.	2.9	39
26	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	1.9	111
27	Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget, 2015, 6, 18748-18779.	0.8	137
28	Synthesis and analysis of novel analogues of dexrazoxane and its open-ring hydrolysis product for protection against anthracycline cardiotoxicity in vitro and in vivo. Toxicology Research, 2015, 4, 1098-1114.	0.9	20
29	Novel Thiosemicarbazones Regulate the Signal Transducer and Activator of Transcription 3 (STAT3) Pathway: Inhibition of Constitutive and Interleukin 6–Induced Activation by Iron Depletion. Molecular Pharmacology, 2015, 87, 543-560.	1.0	37
30	Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. Journal of Inorganic Biochemistry, 2015, 152, 20-37.	1.5	64
31	The renaissance of polypharmacology in the development of anti-cancer therapeutics: Inhibition of the "Triad of Death―in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacological Research, 2015, 100, 255-260.	3.1	127
32	In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites. PLoS ONE, 2015, 10, e0139929.	1.1	7
33	Potentiating the cellular targeting and anti-tumor activity of Dp44mT <i>via</i> binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget, 2015, 6, 10374-10398.	0.8	28
34	The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget, 2015, 6, 35522-35541.	0.8	43
35	Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget, 2015, 6, 42411-42428.	0.8	34
36	Quantitative Analysis of the Anti-Proliferative Activity of Combinations of Selected Iron-Chelating Agents and Clinically Used Anti-Neoplastic Drugs. PLoS ONE, 2014, 9, e88754.	1.1	23

#	Article	IF	CITATIONS
37	Unraveling the mysteries of serum albuminââ,¬â€more than just a serum protein. Frontiers in Physiology, 2014, 5, 299.	1.3	488
38	Structure-Activity Relationships of Novel Salicylaldehyde Isonicotinoyl Hydrazone (SIH) Analogs: Iron Chelation, Anti-Oxidant and Cytotoxic Properties. PLoS ONE, 2014, 9, e112059.	1.1	15
39	Expanding horizons in iron chelation and the treatment of cancer: Role of iron in the regulation of ER stress and the epithelial–mesenchymal transition. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 166-181.	3.3	50
40	Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 1-19.	3.3	88
41	Synthesis and biological evaluation of 2-benzoylpyridine thiosemicarbazones in a dimeric system: Structure–activity relationship studies on their anti-proliferative and iron chelation efficacy. Journal of Inorganic Biochemistry, 2014, 141, 43-54.	1.5	27
42	Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS ONE, 2014, 9, e110291.	1.1	61
43	Novel Chelators for Cancer Treatment: Where Are We Now?. Antioxidants and Redox Signaling, 2013, 18, 973-1006.	2.5	160
44	Alkyl Substituted 2′-Benzoylpyridine Thiosemicarbazone Chelators with Potent and Selective Anti-Neoplastic Activity: Novel Ligands that Limit Methemoglobin Formation. Journal of Medicinal Chemistry, 2013, 56, 357-370.	2.9	56
45	Nitric Oxide Storage and Transport in Cells Are Mediated by Glutathione S-Transferase P1-1 and Multidrug Resistance Protein 1 via Dinitrosyl Iron Complexes. Journal of Biological Chemistry, 2012, 287, 607-618.	1.6	50
46	Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5527-5531.	1.0	61
47	Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo. Journal of Medicinal Chemistry, 2012, 55, 7230-7244.	2.9	165
48	Investigation of substituted 6-aminohexanoates as skin penetration enhancers. Bioorganic and Medicinal Chemistry, 2012, 20, 86-95.	1.4	6
49	Halogenated 2′-Benzoylpyridine Thiosemicarbazone (XBpT) Chelators with Potent and Selective Anti-Neoplastic Activity: Relationship to Intracellular Redox Activity. Journal of Medicinal Chemistry, 2011, 54, 6936-6948.	2.9	51
50	Development of an LC–MS/MS method for analysis of interconvertible Z/E isomers of the novel anticancer agent, Bp4eT. Analytical and Bioanalytical Chemistry, 2010, 397, 161-171.	1.9	10
51	Iron Chelators of the Dipyridylketone Thiosemicarbazone Class: Precomplexation and Transmetalation Effects on Anticancer Activity. Journal of Medicinal Chemistry, 2009, 52, 407-415.	2.9	151
52	Thiosemicarbazones: the new wave in cancer treatment. Future Medicinal Chemistry, 2009, 1, 1143-1151.	1.1	141
53	Structure–Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series. Journal of Medicinal Chemistry, 2008, 51, 331-344.	2.9	91
54	Design, Synthesis, and Characterization of New Iron Chelators with Anti-Proliferative Activity: Structureâ^'Activity Relationships of Novel Thiohydrazone Analogues. Journal of Medicinal Chemistry, 2007, 50, 6212-6225.	2.9	93

#	Article	IF	CITATIONS
55	Future of ToxicologyIron Chelators and Differing Modes of Action and Toxicity:  The Changing Face of Iron Chelation Therapy. Chemical Research in Toxicology, 2007, 20, 715-720.	1.7	125
56	Design, Synthesis, and Characterization of Novel Iron Chelators:  Structureâ^Activity Relationships of the 2-Benzoylpyridine Thiosemicarbazone Series and Their 3-Nitrobenzoyl Analogues as Potent Antitumor Agents. Journal of Medicinal Chemistry, 2007, 50, 3716-3729.	2.9	206
57	Dipyridyl Thiosemicarbazone Chelators with Potent and Selective Antitumor Activity Form Iron Complexes with Redox Activity. Journal of Medicinal Chemistry, 2006, 49, 6510-6521.	2.9	341
58	The Evolution of Iron Chelators for the Treatment of Iron Overload Disease and Cancer. Pharmacological Reviews, 2005, 57, 547-583.	7.1	641