Kelen Cristina Ribeiro Malmegrim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6846834/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autologous hematopoietic stem cell transplantation modifies specific aspects of systemic sclerosis-related microvasculopathy. Therapeutic Advances in Musculoskeletal Disease, 2022, 14, 1759720X2210848.	1.2	6
2	Allogeneic haematopoietic stem cell transplantation resets T―and B ell compartments in sickle cell disease patients. Clinical and Translational Immunology, 2022, 11, e1389.	1.7	2
3	Autologous hematopoietic stem cell transplantation promotes connective tissue remodeling in systemic sclerosis patients. Arthritis Research and Therapy, 2022, 24, 95.	1.6	4
4	Mesenchymal Stromal Cells in Viral Infections: Implications for COVID-19. Stem Cell Reviews and Reports, 2021, 17, 71-93.	1.7	26
5	Autologous haematopoietic stem cell transplantation restores the suppressive capacity of regulatory B cells in systemic sclerosis patients. Rheumatology, 2021, 60, 5538-5548.	0.9	15
6	Hypoxia priming improves in vitro angiogenic properties of umbilical cord derived-mesenchymal stromal cells expanded in stirred-tank bioreactor. Biochemical Engineering Journal, 2021, 168, 107949.	1.8	9
7	Bone Marrow Soluble Mediator Signatures of Patients With Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Frontiers in Oncology, 2021, 11, 665037.	1.3	10
8	Long-Term Effects of Allogeneic Hematopoietic Stem Cell Transplantation on Systemic Inflammation in Sickle Cell Disease Patients. Frontiers in Immunology, 2021, 12, 774442.	2.2	1
9	Establishment of a simple and efficient platform for car-t cell generation and expansion: from lentiviral production to in vivo studies. Hematology, Transfusion and Cell Therapy, 2020, 42, 150-158.	0.1	16
10	Emerging CAR T cell therapies: clinical landscape and patent technological routes. Human Vaccines and Immunotherapeutics, 2020, 16, 1424-1433.	1.4	10
11	Polymorphisms in Inflammatory Genes Modulate Clinical Complications in Patients With Sickle Cell Disease. Frontiers in Immunology, 2020, 11, 2041.	2.2	10
12	CMV-specific clones may lead to reduced TCR diversity and relapse in systemic sclerosis patients treated with AHSCT. Rheumatology, 2020, 59, e38-e40.	0.9	7
13	Immune mechanisms involved in sickle cell disease pathogenesis: current knowledge and perspectives. Immunology Letters, 2020, 224, 1-11.	1.1	16
14	Immunophenotypic Analysis of CAR-T Cells. Methods in Molecular Biology, 2020, 2086, 195-201.	0.4	6
15	CAR-T Cells for Cancer Treatment: Current Design and Next Frontiers. Methods in Molecular Biology, 2020, 2086, 1-10.	0.4	4
16	Emerging Role of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Pathogenesis of Haematological Malignancies. Stem Cells International, 2019, 2019, 1-12.	1.2	19
17	Teplizumab in Relatives at Risk for Type 1 Diabetes. New England Journal of Medicine, 2019, 381, 1879-1881.	13.9	10
18	A single administration of human adipose tissue-derived mesenchymal stromal cells (MSC) induces durable and sustained long-term regulation of inflammatory response in experimental colitis. Clinical and Experimental Immunology, 2019, 196, 139-154.	1.1	23

#	Article	IF	CITATIONS
19	DPP-4 Inhibition Leads to Decreased Pancreatic Inflammatory Profile and Increased Frequency of Regulatory T Cells in Experimental Type 1 Diabetes. Inflammation, 2019, 42, 449-462.	1.7	10
20	Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Research and Therapy, 2019, 10, 131.	2.4	342
21	A Tollâ€ike receptor 2 genetic variant modulates occurrence of bacterial infections in patients with sickle cell disease. British Journal of Haematology, 2019, 185, 918-924.	1.2	12
22	Thymus Rejuvenation After Autologous Hematopoietic Stem Cell Transplantation in Patients with Autoimmune Diseases. , 2019, , 295-309.		1
23	Lower Insulin-Dose Adjusted A1c (IDAA1c) Is Associated With Less Complications in Individuals With Type 1 Diabetes Treated With Hematopoetic Stem-Cell Transplantation and Conventional Therapy. Frontiers in Endocrinology, 2019, 10, 747.	1.5	2
24	Short Communication: Human Bone Marrow Stromal Cells Exhibit Immunosuppressive Effects on Human T Lymphotropic Virus Type 1 T Lymphocyte from Infected Individuals. AIDS Research and Human Retroviruses, 2019, 35, 164-168.	0.5	2
25	Editorial: Immune Profile After Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases: Where Do We Stand?. Frontiers in Immunology, 2019, 10, 3044.	2.2	2
26	Homeostatic proliferation leads to telomere attrition and increased PD-1 expression after autologous hematopoietic SCT for systemic sclerosis. Bone Marrow Transplantation, 2018, 53, 1319-1327.	1.3	33
27	Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases: From Mechanistic Insights to Biomarkers. Frontiers in Immunology, 2018, 9, 2602.	2.2	23
28	Immune rebound associates with a favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Advances, 2018, 2, 126-141.	2.5	71
29	New Horizons in the Treatment of Type 1 Diabetes: More Intense Immunosuppression and Beta Cell Replacement. Frontiers in Immunology, 2018, 9, 1086.	2.2	14
30	Defective expression of apoptosis-related molecules in multiple sclerosis patients is normalized early after autologous haematopoietic stem cell transplantation. Clinical and Experimental Immunology, 2017, 187, 383-398.	1.1	18
31	Microvascular Complications in Type 1 Diabetes: A Comparative Analysis of Patients Treated with Autologous Nonmyeloablative Hematopoietic Stem-Cell Transplantation and Conventional Medical Therapy. Frontiers in Endocrinology, 2017, 8, 331.	1.5	12
32	Immunological Balance Is Associated with Clinical Outcome after Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Frontiers in Immunology, 2017, 8, 167.	2.2	65
33	Cytokine profile and lymphocyte subsets in type 2 diabetes. Brazilian Journal of Medical and Biological Research, 2016, 49, e5062.	0.7	21
34	Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Research and Therapy, 2016, 7, 92.	2.4	21
35	Plasma eicosanoid profiles determined by high-performance liquid chromatography coupled with tandem mass spectrometry in stimulated peripheral blood from healthy individuals and sickle cell anemia patients in treatment. Analytical and Bioanalytical Chemistry, 2016, 408, 3613-3623.	1.9	26
36	Multipotent mesenchymal stromal cells from patients with newly diagnosed type 1 diabetes mellitus exhibit preserved in vitro and in vivo immunomodulatory properties. Stem Cell Research and Therapy, 2016, 7, 14.	2.4	46

#	Article	IF	CITATIONS
37	Xenogeneic Mesenchymal Stromal Cells Improve Wound Healing and Modulate the Immune Response in an Extensive Burn Model. Cell Transplantation, 2016, 25, 201-215.	1.2	50
38	Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clinical Immunology, 2016, 169, 47-57.	1.4	55
39	Newly-Generated Regulatory B- and T-Cells Are Associated with Clinical Improvement and Reversal of Dermal Fibrosis in Systemic Sclerosis Patients after Autologous Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 4625-4625.	0.6	2
40	T Cell Repertoire Diversity of Sickle Cell Anemia Patients Treated with Allogeneic Hematopoietic Stem Cell Transplantation and Conventional Treatments. Blood, 2016, 128, 4586-4586.	0.6	0
41	Mast cells control insulitis and increase Treg cells to confer protection against STZâ€induced type 1 diabetes in mice. European Journal of Immunology, 2015, 45, 2873-2885.	1.6	24
42	Bone Marrow Mesenchymal Stromal Cells Isolated from Multiple Sclerosis Patients have Distinct Gene Expression Profile and Decreased Suppressive Function Compared with Healthy Counterparts. Cell Transplantation, 2015, 24, 151-165.	1.2	44
43	Cultured Human Adipose Tissue Pericytes and Mesenchymal Stromal Cells Display a Very Similar Gene Expression Profile. Stem Cells and Development, 2015, 24, 2822-2840.	1.1	44
44	Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clinical Science, 2015, 128, 111-120.	1.8	29
45	Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplantation, 2015, 50, 380-389.	1.3	79
46	Therapeutic efficacy and biodistribution of allogeneic mesenchymal stem cells delivered by intrasplenic and intrapancreatic routes in streptozotocin-induced diabetic mice. Stem Cell Research and Therapy, 2015, 6, 31.	2.4	43
47	OP0010â€Autologous Hematopoietic Stem Cell Transplantation Increases T-Cell PD-1 Expression and Regulatory Mechanisms in Systemic Sclerosis Patients. Annals of the Rheumatic Diseases, 2015, 74, 67.3-68.	0.5	0
48	Metabolic and Pancreatic Effects of Bone Marrow Mesenchymal Stem Cells Transplantation in Mice Fed High-Fat Diet. PLoS ONE, 2015, 10, e0124369.	1.1	7
49	A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis. PLoS ONE, 2015, 10, e0134011.	1.1	7
50	THU0501â€Hematopoietic Stem Cell Transplantation Increases Naive and Regulatory B Cells While Decreasing Memory B Cells in Systemic Sclerosis Patients. Annals of the Rheumatic Diseases, 2014, 73, 356.2-356.	0.5	3
51	Genes Related to Antiviral Activity, Cell Migration, and Lysis Are Differentially Expressed in CD4+T Cells in Human T Cell Leukemia Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis Patients. AIDS Research and Human Retroviruses, 2014, 30, 610-622.	0.5	20
52	Dynamic changes of the Th17/Tc17 and regulatory T cell populations interfere in the experimental autoimmune diabetes pathogenesis. Immunobiology, 2013, 218, 338-352.	0.8	49
53	Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: roles of canonical and nonâ€canonical NFâ€ÊB signalling. Journal of Cellular and Molecular Medicine, 2012, 16, 1232-1244.	1.6	44
54	Up-regulation of <i>fas</i> and <i>fasL</i> pro-apoptotic genes expression in type 1 diabetes patients after autologous haematopoietic stem cell transplantation. Clinical and Experimental Immunology, 2012, 168, 291-302.	1.1	24

#	Article	IF	CITATIONS
55	Stem cell therapy for diabetes mellitus. Kidney International Supplements, 2011, 1, 94-98.	4.6	10
56	C-Peptide Levels and Insulin Independence Following Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus. JAMA - Journal of the American Medical Association, 2009, 301, 1573.	3.8	370
57	HLA-G Transference From Multipotent Mesenchymal Stromal Cells to Activated T-Lymphocytes Blood, 2009, 114, 3674-3674.	0.6	0
58	Autologous Hematopoietic Stem Cell Transplantation for Type 1 Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 220-229.	1.8	37
59	Mesenchymal Stromal Cells Promote a Sustained Increase of the CD69 Marker on Activated CD3+ Lymphocytes: Potential Immunomodulatory Role. Blood, 2008, 112, 2417-2417.	0.6	Ο
60	Ethics of Hematopoietic Stem Cell Transplantation in Type 1 Diabetes Mellitus—Reply. JAMA - Journal of the American Medical Association, 2007, 298, 285.	3.8	3
61	Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus. JAMA - Journal of the American Medical Association, 2007, 297, 1568.	3.8	482
62	Caspase-mediated cleavage of the exosome subunit PM/Scl-75 during apoptosis. Arthritis Research and Therapy, 2007, 9, R12.	1.6	8
63	Transplante de células-tronco hematopoéticas em doenças reumáticas parte 1: experiência internacional. Revista Brasileira De Reumatologia, 2005, 45, 229.	0.8	6
64	Transplante de células-tronco hematopoéticas em doenças reumáticas. Parte 2: experiência brasileira e perspectivas futuras. Revista Brasileira De Reumatologia, 2005, 45, 301.	0.8	0
65	Haematopoietic stem cell transplantation for refractory Takayasu's arteritis. British Journal of Rheumatology, 2004, 43, 1308-1309.	2.5	17
66	Autologous Hematopoietic Stem Cell Transplantation for Type I Diabetes Mellitus Blood, 2004, 104, 5224-5224.	0.6	2
67	Recombinant anti-P protein autoantibodies isolated from a human autoimmune library: reactivity, specificity and epitope recognition. Cellular and Molecular Life Sciences, 2003, 60, 588-598.	2.4	26
68	Caspase-mediated cleavage of the U snRNP-associated Sm-F protein during apoptosis. Cell Death and Differentiation, 2003, 10, 570-579.	5.0	12