Rosemary Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6846730/publications.pdf

Version: 2024-02-01

567281 526287 27 800 15 27 citations h-index g-index papers 32 32 32 1005 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The East River, Colorado, Watershed: A Mountainous Community Testbed for Improving Predictive Understanding of Multiscale Hydrological–Biogeochemical Dynamics. Vadose Zone Journal, 2018, 17, 1-25.	2.2	115
2	Snowmelt controls on concentrationâ€discharge relationships and the balance of oxidative and acidâ€base weathering fluxes in an alpine catchment, <scp>E</scp> ast <scp>R</scp> iver, <scp>C</scp> olorado. Water Resources Research, 2017, 53, 2507-2523.	4.2	98
3	The Importance of Interflow to Groundwater Recharge in a Snowmeltâ€Dominated Headwater Basin. Geophysical Research Letters, 2019, 46, 5899-5908.	4.0	73
4	Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sensing of Environment, 2016, 185, 186-197.	11.0	72
5	Geochemical Exports to River From the Intrameander Hyporheic Zone Under Transient Hydrologic Conditions: East River Mountainous Watershed, Colorado. Water Resources Research, 2018, 54, 8456-8477.	4.2	66
6	Factors controlling seasonal groundwater and solute flux from snowâ€dominated basins. Hydrological Processes, 2018, 32, 2187-2202.	2.6	63
7	Depth―and Timeâ€Resolved Distributions of Snowmeltâ€Driven Hillslope Subsurface Flow and Transport and Their Contributions to Surface Waters. Water Resources Research, 2019, 55, 9474-9499.	4.2	25
8	Why does snowmelt-driven streamflow response to warming vary? A data-driven review and predictive framework. Environmental Research Letters, 2022, 17, 053004.	5. 2	25
9	Differential C-Q Analysis: A New Approach to Inferring Lateral Transport and Hydrologic Transients Within Multiple Reaches of a Mountainous Headwater Catchment. Frontiers in Water, 2020, 2, .	2.3	24
10	Persistence and Plasticity in Conifer Waterâ€Use Strategies. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2018JG004845.	3.0	24
11	Evaluating mountain meadow groundwater response to Pinyonâ€Juniper and temperature in a great basin watershed. Ecohydrology, 2017, 10, e1792.	2.4	21
12	Streamflow partitioning and transit time distribution in snow-dominated basins as a function of climate. Journal of Hydrology, 2019, 570, 726-738.	5.4	20
13	Mason Valley Groundwater Model: Linking Surface Water and Groundwater in the Walker River Basin, Nevada ¹ . Journal of the American Water Resources Association, 2010, 46, 554-573.	2.4	19
14	Regulation of precipitationâ€associated vegetation dynamics on catchment water balance in a semiarid and arid mountainous watershed. Ecohydrology, 2016, 9, 1248-1262.	2.4	19
15	Challenges in Building an End-to-End System for Acquisition, Management, and Integration of Diverse Data From Sensor Networks in Watersheds: Lessons From a Mountainous Community Observatory in East River, Colorado. IEEE Access, 2019, 7, 182796-182813.	4.2	18
16	Significant stream chemistry response to temperature variations in a high-elevation mountain watershed. Communications Earth & Environment, 2020, 1 , .	6.8	16
17	Efficiency of the Summer Monsoon in Generating Streamflow Within a Snowâ€Dominated Headwater Basin of the Colorado River. Geophysical Research Letters, 2020, 47, e2020GL090856.	4.0	16
18	Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments. Science of the Total Environment, 2016, 563-564, 386-395.	8.0	12

#	Article	IF	CITATIONS
19	An unconfined groundwater model of the Death Valley Regional Flow System and a comparison to its confined predecessor. Journal of Hydrology, 2009, 373, 316-328.	5.4	11
20	Calibrating a Basinâ€Scale Groundwater Model to Remotely Sensed Estimates of Groundwater Evapotranspiration. Journal of the American Water Resources Association, 2015, 51, 1114-1127.	2.4	11
21	Baseflow Age Distributions and Depth of Active Groundwater Flow in a Snowâ€Dominated Mountain Headwater Basin. Water Resources Research, 2020, 56, e2020WR028161.	4.2	10
22	The Colorado East River Community Observatory Data Collection. Hydrological Processes, 2021, 35, e14243.	2.6	10
23	Seasonal Variation of Mercury Associated with Different Phytoplankton Size Fractions in Lahontan Reservoir, Nevada. Water, Air, and Soil Pollution, 2011, 217, 221-232.	2.4	9
24	Modeling the Highly Dynamic Loading of Mercury Species in the Carson River and Lahontan Reservoir System, Nevada. Journal of the American Water Resources Association, 2016, 52, 1207-1222.	2.4	7
25	Variability of Snow and Rainfall Partitioning Into Evapotranspiration and Summer Runoff Across Nine Mountainous Catchments. Geophysical Research Letters, 2022, 49, .	4.0	6
26	Sulfur Biogeochemical Cycling and Redox Dynamics in a Shaleâ€Dominated Mountainous Watershed. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
27	The importance of dynamic mercury water column concentrations on body burdens in a planktivorous fish: A bioenergetic and mercury mass balance perspective. Ecological Modelling, 2017, 364, 66-76.	2.5	2