
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6846423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The aetiopathogenesis of vaccine-induced immune thrombotic thrombocytopenia. Clinical Medicine, 2022, 22, 140-144.	0.8	7
2	Development of a low-seroprevalence, αvβ6 integrin-selective virotherapy based on human adenovirus type 10. Molecular Therapy - Oncolytics, 2022, 25, 43-56.	2.0	6
3	The Fiber Knob Protein of Human Adenovirus Type 49 Mediates Highly Efficient and Promiscuous Infection of Cancer Cell Lines Using a Novel Cell Entry Mechanism. Journal of Virology, 2021, 95, .	1.5	9
4	Pouring petrol on the flames: Using oncolytic virotherapies to enhance tumour immunogenicity. Immunology, 2021, 163, 389-398.	2.0	5
5	Efficient Intravenous Tumor Targeting Using the αvβ6 Integrin-Selective Precision Virotherapy Ad5NULL-A20. Viruses, 2021, 13, 864.	1.5	6
6	In Vitro and In Vivo Evaluation of Human Adenovirus Type 49 as a Vector for Therapeutic Applications. Viruses, 2021, 13, 1483.	1.5	4
7	To clot or not to clot? Ad is the question—Insights on mechanisms related to vaccineâ€induced thrombotic thrombocytopenia. Journal of Thrombosis and Haemostasis, 2021, 19, 2845-2856.	1.9	16
8	The Revolving Door of Adenovirus Cell Entry: Not All Pathways Are Equal. Pharmaceutics, 2021, 13, 1585.	2.0	12
9	The Feasibility of Pressurised Intraperitoneal Aerosolised Virotherapy (PIPAV) to Administer Oncolytic Adenoviruses. Pharmaceutics, 2021, 13, 2043.	2.0	5
10	ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome. Science Advances, 2021, 7, eabl8213.	4.7	112
11	Identification of folate receptor α (FRα) binding oligopeptides and their evaluation for targeted virotherapy applications. Cancer Gene Therapy, 2020, 27, 785-798.	2.2	9
12	Hitting the Target but Missing the Point: Recent Progress towards Adenovirus-Based Precision Virotherapies. Cancers, 2020, 12, 3327.	1.7	16
13	Safe management of surgical smoke in the age of COVID-19. British Journal of Surgery, 2020, 107, 1406-1413.	0.1	168
14	Ad-CD40L mobilizes CD4 T cells for the treatment of brainstem tumors. Neuro-Oncology, 2020, 22, 1757-1770.	0.6	7
15	Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nature Immunology, 2020, 21, 178-185.	7.0	186
16	Cancer Antigen Discovery Is Enabled by RNA Sequencing of Highly Purified Malignant and Nonmalignant Cells. Clinical Cancer Research, 2020, 26, 3360-3370.	3.2	3
17	Human adenovirus type 26 uses sialic acid–bearing glycans as a primary cell entry receptor. Science Advances, 2019, 5, eaax3567.	4.7	69
18	Systemic delivery and SPECT/CT in vivo imaging of 125I-labelled oncolytic adenoviral mutants in models of pancreatic cancer. Scientific Reports, 2019, 9, 12840.	1.6	8

#	Article	IF	CITATIONS
19	Diversity within the adenovirus fiber knob hypervariable loops influences primary receptor interactions. Nature Communications, 2019, 10, 741.	5.8	46
20	The Novel Oncolytic Adenoviral Mutant Ad5-3Δ-A20T Retargeted to αvl²6 Integrins Efficiently Eliminates Pancreatic Cancer Cells. Molecular Cancer Therapeutics, 2018, 17, 575-587.	1.9	41
21	Ad5NULL-A20: A Tropism-Modified, αvβ6 Integrin-Selective Oncolytic Adenovirus for Epithelial Ovarian Cancer Therapies. Clinical Cancer Research, 2018, 24, 4215-4224.	3.2	36
22	Designer Oncolytic Adenovirus: Coming of Age. Cancers, 2018, 10, 201.	1.7	69
23	Histone deacetylase inhibitor trichostatin A sensitises cisplatin-resistant ovarian cancer cells to oncolytic adenovirus. Oncotarget, 2018, 9, 26328-26341.	0.8	16
24	Precision virotherapies: Coming soon. Oncotarget, 2018, 9, 35605-35606.	0.8	1
25	Superlensing microscope objective lens. Applied Optics, 2017, 56, 3142.	2.1	38
26	Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy. Cancer Gene Therapy, 2016, 23, 229-234.	2.2	23
27	Retargeting FX-binding-ablated HAdV-5 to vascular cells by inclusion of the RGD-4C peptide in hexon hypervariable region 7 and the HI loop. Journal of General Virology, 2016, 97, 1911-1916.	1.3	8
28	Pseudotyped αvβ6 integrin-targeted adenovirus vectors for ovarian cancer therapies. Oncotarget, 2016, 7, 27926-27937.	0.8	31
29	Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications. Viruses, 2015, 7, 6009-6042.	1.5	67
30	Evidence for Contribution of CD4+CD25+ Regulatory T Cells in Maintaining Immune Tolerance to Human Factor IX following Perinatal Adenovirus Vector Delivery. Journal of Immunology Research, 2015, 2015, 1-6.	0.9	13
31	Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies. Human Gene Therapy, 2015, 26, 320-329.	1.4	35
32	Efficient Transduction of Primary Vascular Cells by the Rare Adenovirus Serotype 49 Vector. Human Gene Therapy, 2015, 26, 312-319.	1.4	25
33	P238Efficient gene transfer to human vascular cells in vitro and ex vivo using adenovirus serotype 49. Cardiovascular Research, 2014, 103, S42.4-S42.	1.8	Ο
34	Retargeting Adenovirus Serotype 48 Fiber Knob Domain by Peptide Incorporation. Human Gene Therapy, 2014, 25, 385-394.	1.4	11
35	Capsid Modification Strategies for Detargeting Adenoviral Vectors. Methods in Molecular Biology, 2014, 1089, 45-59.	0.4	0
36	Identification of novel small molecule inhibitors of adenovirus gene transfer using a high throughput screening approach. Journal of Controlled Release, 2013, 170, 132-140.	4.8	15

#	Article	IF	CITATIONS
37	Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile. Journal of Cardiothoracic Surgery, 2013, 8, 183.	0.4	12
38	Pseudotyping the adenovirus serotype 5 capsid with both the fibre and penton of serotype 35 enhances vascular smooth muscle cell transduction. Gene Therapy, 2013, 20, 1158-1164.	2.3	25
39	Manipulation of adenovirus interactions with host factors for gene therapy applications. Nanomedicine, 2012, 7, 271-288.	1.7	46
40	Ad5:Ad48 Hexon Hypervariable Region Substitutions Lead to Toxicity and Increased Inflammatory Responses Following Intravenous Delivery. Molecular Therapy, 2012, 20, 2268-2281.	3.7	54
41	A Cluster of Basic Amino Acids in the Factor X Serine Protease Mediates Surface Attachment of Adenovirus/FX Complexes. Journal of Virology, 2011, 85, 10914-10919.	1.5	32
42	COP35, a Cholangiocarcinoma-Binding Oligopeptide, Interacts with the Clathrin Heavy Chain Accompanied by GRP78. Molecular Cancer Research, 2011, 9, 688-701.	1.5	7
43	Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood, 2010, 116, 2656-2664.	0.6	96
44	Functional characterization of a 13-bp deletion (c15221510del13) in the promoter of the von Willebrand factor gene in type 1 von Willebrand disease. Blood, 2010, 116, 3645-3652.	0.6	32
45	Self-Assembly of Peptides into Spherical Nanoparticles for Delivery of Hydrophilic Moieties to the Cytosol. ACS Nano, 2010, 4, 2856-2864.	7.3	21
46	Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors. Viruses, 2010, 2, 2290-2355.	1.5	104
47	Requirements for Receptor Engagement during Infection by Adenovirus Complexed with Blood Coagulation Factor X. PLoS Pathogens, 2010, 6, e1001142.	2.1	70
48	Effect of Neutralizing Sera on Factor X-Mediated Adenovirus Serotype 5 Gene Transfer. Journal of Virology, 2009, 83, 479-483.	1.5	72
49	Influence of Coagulation Factor X on In Vitro and In Vivo Gene Delivery by Adenovirus (Ad) 5, Ad35, and Chimeric Ad5/Ad35 Vectors. Molecular Therapy, 2009, 17, 1683-1691.	3.7	41
50	Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood, 2009, 114, 965-971.	0.6	158
51	Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell, 2008, 132, 397-409.	13.5	573
52	Identification of oligopeptide binding to colon cancer cells separated from patients using laser capture microdissection. Journal of Drug Targeting, 2008, 16, 396-404.	2.1	19
53	Interactions of adenovirus vectors with blood: implications for intravascular gene therapy applications. Current Opinion in Molecular Therapeutics, 2008, 10, 439-48.	2.8	26
54	Targeting of Adenovirus Serotype 5 (Ad5) and 5/47 Pseudotyped Vectors In Vivo: Fundamental Involvement of Coagulation Factors and Redundancy of CAR Binding by Ad5. Journal of Virology, 2007, 81, 9568-9571.	1.5	70

#	Article	IF	CITATIONS
55	Influence of Coagulation Factor Zymogens on the Infectivity of Adenoviruses Pseudotyped with Fibers from Subgroup D. Journal of Virology, 2007, 81, 3627-3631.	1.5	62
56	(LYS)16-based reducible polycations provide stable polyplexes with anionic fusogenic peptides and efficient gene delivery to post mitotic cells. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 1331-1337.	1.1	29
57	Bacteriophage biopanning in human tumour biopsies to identify cancer-specific targeting ligands. Journal of Drug Targeting, 2007, 15, 311-319.	2.1	6
58	Identification of an Oligopeptide Binding to Hepatocellular Carcinoma. Oncology, 2006, 71, 136-145.	0.9	4
59	Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood, 2006, 108, 2554-2561.	0.6	256
60	Identification of oligopeptides binding to peritoneal tumors of gastric cancer. Cancer Science, 2006, 97, 1075-1081.	1.7	39
61	376. Hepatic Tropism of Adenoviral Type 5 Vectors Can Be Mediated by Multiple Coagulation Factors. Molecular Therapy, 2006, 13, S143.	3.7	1
62	Exploration of peptide motifs for potent non-viral gene delivery highly selective for dividing cells. Journal of Gene Medicine, 2005, 7, 1545-1554.	1.4	18
63	Enhanced gene transfer activity of peptide-targeted gene-delivery vectors. Journal of Drug Targeting, 2005, 13, 39-51.	2.1	37
64	12th Annual Congress of the European Society of Gene Therapy. Expert Opinion on Biological Therapy, 2005, 5, 137-141.	1.4	5
65	Use of a Phage Display Library to Identify Oligopeptides Binding to the Lumenal Surface of Polarized Endothelium byEx VivoPerfusion of Human Umbilical Veins. Journal of Drug Targeting, 2003, 11, 53-59.	2.1	25
66	Nonviral gene delivery: techniques and implications for molecular medicine. Expert Reviews in Molecular Medicine, 2003, 5, 1-15.	1.6	73
67	Targeting of Polyelectrolyte RNA Complexes to Cell Surface Integrins as an Efficient Cytoplasmic Transfection Mechanism. Journal of Bioactive and Compatible Polymers, 2002, 17, 229-238.	0.8	8
68	Laterally Stabilized Complexes of DNA with Linear Reducible Polycations:Â Strategy for Triggered Intracellular Activation of DNA Delivery Vectors. Journal of the American Chemical Society, 2002, 124, 8-9.	6.6	223
69	Methodologies for Monitoring Nanoparticle Formation by Self-Assembly of DNA with Poly(l-lysine). Analytical Biochemistry, 2002, 302, 75-80.	1.1	57
70	Identification of FGF receptor-binding peptides for cancer gene therapy. Cancer Gene Therapy, 2002, 9, 543-552.	2.2	58