Zhongping Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6846412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proceedings of the United States of America, 2003, 100, 6353-6357.	3.3	184
2	Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14646-14651.	3.3	149
3	Insights into the Finer Issues of Native Chemical Ligation: An Approach to Cascade Ligations. Angewandte Chemie - International Edition, 2010, 49, 9500-9503.	7.2	114
4	An Advance in Proline Ligation. Journal of the American Chemical Society, 2011, 133, 10784-10786.	6.6	114
5	Advances in Proline Ligation. Journal of the American Chemical Society, 2012, 134, 3912-3916.	6.6	103
6	Specificity of <i>O</i> -glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7612-7617.	3.3	85
7	Distinct roles of N- and O-glycans in cellulase activity and stability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13667-13672.	3.3	76
8	Binding of the SARS-CoV-2 spike protein to glycans. Science Bulletin, 2021, 66, 1205-1214.	4.3	69
9	Toward Homogeneous Erythropoietin: Non-NCL-Based Chemical Synthesis of the Gln78â [°] Arg166 Glycopeptide Domain. Journal of the American Chemical Society, 2009, 131, 5424-5431.	6.6	67
10	Genetic Code Expansion: A Brief History and Perspective. Biochemistry, 2021, 60, 3455-3469.	1.2	63
11	Application of the logic of cysteine-free native chemical ligation to the synthesis of Human Parathyroid Hormone (hPTH). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5986-5989.	3.3	62
12	Synthesis of the fucosylated biantennary N-glycan of erythropoietin. Tetrahedron Letters, 2006, 47, 5577-5579.	0.7	54
13	Rational development of a strategy for modifying the aggregatibility of proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4297-4302.	3.3	53
14	Protein Glycoengineering: An Approach for Improving Protein Properties. Frontiers in Chemistry, 2020, 8, 622.	1.8	51
15	Glycosylation of Cellulases. Advances in Carbohydrate Chemistry and Biochemistry, 2015, 72, 63-112.	0.4	38
16	Mature homogeneous erythropoietin-level building blocks by chemical synthesis: the EPO 114–166 glycopeptide domain, presenting the O-linked glycophorin. Tetrahedron Letters, 2006, 47, 8013-8016.	0.7	36
17	Chemical biology of glycoproteins: From chemical synthesis to biological impact. Methods in Enzymology, 2019, 621, 213-229.	0.4	35
18	Molecular-scale features that govern the effects of O-glycosylation on a carbohydrate-binding module. Chemical Science, 2015, 6, 7185-7189.	3.7	30

ZHONGPING TAN

#	Article	IF	CITATIONS
19	Structural Insight into the Stabilizing Effect of O-Glycosylation. Biochemistry, 2017, 56, 2897-2906.	1.2	29
20	Chemically Precise Glycoengineering Improves Human Insulin. ACS Chemical Biology, 2018, 13, 73-81.	1.6	27
21	The impact of <i>O</i> -glycan chemistry on the stability of intrinsically disordered proteins. Chemical Science, 2018, 9, 3710-3715.	3.7	23
22	Methods for engineering therapeutic peptides. Chinese Chemical Letters, 2018, 29, 1074-1078.	4.8	23
23	Using Chemical Synthesis To Study and Apply Protein Glycosylation. Biochemistry, 2018, 57, 413-428.	1.2	20
24	O-GlcNAcylation of myosin phosphatase targeting subunit 1 (MYPT1) dictates timely disjunction of centrosomes. Journal of Biological Chemistry, 2020, 295, 7341-7349.	1.6	19
25	Oâ€glycosylation effects on family 1 carbohydrateâ€binding module solution structures. FEBS Journal, 2015, 282, 4341-4356.	2.2	18
26	Quantitative Effects of O-Linked Glycans on Protein Folding. Biochemistry, 2017, 56, 4539-4548.	1.2	14
27	Carbohydrate-binding module <i>O</i> -mannosylation alters binding selectivity to cellulose and lignin. Chemical Science, 2020, 11, 9262-9271.	3.7	13
28	A convenient and efficient synthetic approach to mono-, di-, and tri-O-mannosylated Fmoc amino acids. Tetrahedron Letters, 2013, 54, 2190-2193.	0.7	11
29	Toward Homogeneous Erythropoietin: Application of Metalâ€Free Dethiylation in the Chemical Synthesis of the Ala79â€Arg166 Glycopeptide Domain. Israel Journal of Chemistry, 2011, 51, 968-976.	1.0	10
30	New Methods for Chemical Protein Synthesis. Topics in Current Chemistry, 2014, 363, 155-192.	4.0	8
31	Chemical Synthesis of the Multiply Phosphorylated and Biotinylated N-Terminal Transactivation Domain of Human p53 (p53TAD). Synlett, 2017, 28, 1917-1922.	1.0	6
32	Automated Peptide Synthesizers and Glycoprotein Synthesis. Frontiers in Chemistry, 2022, 10, .	1.8	6
33	Multimodal Recognition of Diverse Peptides by the C-Terminal SH2 Domain of Phospholipase C-γ1 Protein. Biochemistry, 2017, 56, 2225-2237.	1.2	5
34	O-GalNAcylation of RANTES Improves Its Properties as a Human Immunodeficiency Virus Type 1 Entry Inhibitor. Biochemistry, 2018, 57, 136-148.	1.2	5
35	Diversity in peptide recognition by the SH2 domain of SH2B1. Proteins: Structure, Function and Bioinformatics, 2018, 86, 164-176.	1.5	5
36	Chemical Biology of Protein <i>O</i> -Glycosylation. Chemical Biology, 2017, , 48-93.	0.1	2

#	Article	IF	CITATIONS
37	Identifying signatures of proteolytic stability and monomeric propensity in O-glycosylated insulin using molecular simulation. Journal of Computer-Aided Molecular Design, 2022, 36, 313-328.	1.3	2
38	Development of a Glycoform Library-based Strategy to Decipher the Role of Protein Glycosylation. Methods in Molecular Biology, 2022, , 195-211.	0.4	2