Marta Gaburjakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6845381/publications.pdf

Version: 2024-02-01

34 1,887 14 31 g-index

34 34 34 34 1709

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	The Cardiac Ryanodine Receptor Provides a Suitable Pathway for the Rapid Transport of Zinc (Zn2+). Cells, 2022, 11, 868.	1.8	5
2	Trophic factors as potential therapies for treatment of major mental disorders. Neuroscience Letters, 2021, 764, 136194.	1.0	16
3	Blocking effect of ferritin on the ryanodine receptor-isoform 2. Archives of Biochemistry and Biophysics, 2021, 712, 109031.	1.4	O
4	Impact of Al2O3 Particle Size on the Open Porosity of Ni/Al2O3 Composites Prepared by the Thermal Oxidation at Moderate Temperatures. Metals, 2021 , 11 , 1582 .	1.0	2
5	Luminal addition of non-permeant Eu3+ interferes with luminal Ca2+ regulation of the cardiac ryanodine receptor. Bioelectrochemistry, 2020, 132, 107449.	2.4	2
6	Multisite phosphorylation of the cardiac ryanodine receptor: a random or coordinated event?. Pflugers Archiv European Journal of Physiology, 2020, 472, 1793-1807.	1.3	4
7	Reconstitution of Ion Channels in Planar Lipid Bilayers: New Approaches. Advances in Biomembranes and Lipid Self-Assembly, 2018, 27, 147-185.	0.3	4
8	Omecamtiv Mecarbil: A Myosin Motor Activator Agent with Promising Clinical Performance and New in vitro Results. Current Medicinal Chemistry, 2018, 25, 1720-1728.	1.2	11
9	Omecamtiv mecarbil activates ryanodine receptors from canine cardiac but not skeletal muscle. European Journal of Pharmacology, 2017, 809, 73-79.	1.7	8
10	Insight towards the identification of cytosolic Ca ²⁺ â€binding sites in ryanodine receptors from skeletal and cardiac muscle. Acta Physiologica, 2017, 219, 757-767.	1.8	4
11	Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites. Bioelectrochemistry, 2016, 109, 49-56.	2.4	8
12	Coupled gating modifies the regulation of cardiac ryanodine receptors by luminal Ca2+. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 867-873.	1.4	9
13	Functional interaction between calsequestrin and ryanodine receptor in the heart. Cellular and Molecular Life Sciences, 2013, 70, 2935-2945.	2.4	28
14	Ryanodine Receptor Recruitment and Construction of Calcium Release Sites in Cardiac Myocytes. Biophysical Journal, 2012, 102, 316a.	0.2	0
15	Control of Diastolic Activity of the RyR2 Channel by Luminal Calcium and ATP. Biophysical Journal, 2012, 102, 316a.	0.2	0
16	Luminal Ca2+ controls activation of the cardiac ryanodine receptor by ATP. Journal of General Physiology, 2012, 140, 93-108.	0.9	32
17	Identification of Changes in the Functional Profile of the Cardiac Ryanodine Receptor Caused by the Coupled Gating Phenomenon. Journal of Membrane Biology, 2010, 234, 159-169.	1.0	4
18	Challenging quantal calcium signaling in cardiac myocytes. Journal of General Physiology, 2010, 136, 581-583.	0.9	7

#	Article	IF	CITATIONS
19	Effect of luminal Ca2+on the stability of coupled gating between ryanodine receptors from the rat heart. Acta Physiologica, 2008, 193, 219-227.	1.8	4
20	The cardiac ryanodine receptor: Looking for anomalies in permeation properties. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2564-2572.	1.4	4
21	BLM Analyzer: a software tool for experiments on planar lipid bilayers. BioTechniques, 2007, 42, 335-341.	0.8	4
22	Inhibition of anion channels derived from mitochondrial membranes of the rat heart by stilbene disulfonateâ€"DIDS. Journal of Bioenergetics and Biomembranes, 2007, 39, 301-311.	1.0	16
23	Comparison of the Effects Exerted by Luminal Ca2+ on the Sensitivity of the Cardiac Ryanodine Receptor to Caffeine and Cytosolic Ca2+. Journal of Membrane Biology, 2006, 212, 17-28.	1.0	32
24	Protein Kinase A Phosphorylation of the Cardiac Calcium Release Channel (Ryanodine Receptor) in Normal and Failing Hearts. Journal of Biological Chemistry, 2003, 278, 444-453.	1.6	188
25	PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle. Journal of Cell Biology, 2003, 160, 919-928.	2.3	217
26	Dilated Cardiomyopathy and Sudden Death Resulting From Constitutive Activation of Protein Kinase A. Circulation Research, 2001, 89, 997-1004.	2.0	256
27	FKBP12 Binding Modulates Ryanodine Receptor Channel Gating. Journal of Biological Chemistry, 2001, 276, 16931-16935.	1.6	145
28	Phosphorylation-Dependent Regulation of Ryanodine Receptors. Journal of Cell Biology, 2001, 153, 699-708.	2.3	275
29	Coupled Gating Between Cardiac Calcium Release Channels (Ryanodine Receptors). Circulation Research, 2001, 88, 1151-1158.	2.0	365
30	\hat{l}^2 -Adrenergic Receptor Blockers Restore Cardiac Calcium Release Channel (Ryanodine Receptor) Structure and Function in Heart Failure. Circulation, 2001, 104, 2843-2848.	1.6	167
31	Properties of a new calcium-permeable single channel from tracheal microsomes. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1417, 25-31.	1.4	1
32	FKBP12 Modulates Gating of the Ryanodine Receptor/Calcium Release Channela. Annals of the New York Academy of Sciences, 1998, 853, 149-156.	1.8	27
33	Agar-supported lipid bilayers — basic structures for biosensor design. Electrical and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 140, 357-367.	2.3	28
34	A study of the interaction of some neuropeptides and their analogs with bilayer lipid membranes and liposomes. Bioelectrochemistry, 1997, 42, 123-132.	1.0	14