Dencho Spassov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6845230/publications.pdf

Version: 2024-02-01

1478505 1588992 8 106 6 8 citations h-index g-index papers 8 8 8 147 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of the Effects of Rapid Thermal Annealing on the Electron Transport Mechanism in Nitrogen-Doped ZnO Thin Films Grown by RF Magnetron Sputtering. Nanomaterials, 2022, 12, 19.	4.1	6
2	Structural, morphological and optical properties of atomic layer deposited transition metal (Co, Ni) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
3	Radiation Tolerance and Charge Trapping Enhancement of ALD HfO2/Al2O3 Nanolaminated Dielectrics. Materials, 2021, 14, 849.	2.9	8
4	Al ₂ O ₃ /HfO ₂ Multilayer Highâ€k Dielectric Stacks for Charge Trapping Flash Memories. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700854.	1.8	27
5	Consideration of conduction mechanisms in high-k dielectric stacks as a tool to study electrically active defects. Facta Universitatis - Series Electronics and Energetics, 2017, 30, 511-548.	0.9	11
6	Tailoring the Electrical Properties of HfO ₂ MOS-Devices by Aluminum Doping. ACS Applied Materials & Doping and Substitution (1978) and Subs	8.0	33
7	The influence of technology and switching parameters on resistive switching behavior of Pt/HfO2/TiN MIM structures. Facta Universitatis - Series Electronics and Energetics, 2014, 27, 621-630.	0.9	3
8	Thin Ta2O5 Films on Si by XPS. Surface Science Spectra, 2000, 7, 143-149.	1.3	12