
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6845090/publications.pdf Version: 2024-02-01

DETED KADIAN

#	Article	IF	CITATIONS
1	Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Molecular and Cellular Biochemistry, 2003, 248, 41-47.	3.1	126
2	The Involvement of Mg ²⁺ in Regulation of Cellular and Mitochondrial Functions. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	4.0	104
3	Role of Homocysteine in the Ischemic Stroke and Development of Ischemic Tolerance. Frontiers in Neuroscience, 2016, 10, 538.	2.8	85
4	Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. International Journal of Molecular Sciences, 2020, 21, 7698.	4.1	85
5	Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake Circulation Research, 1992, 71, 1123-1130.	4.5	70
6	Ischemic Tolerance: The Mechanisms of Neuroprotective Strategy. Anatomical Record, 2009, 292, 2002-2012.	1.4	70
7	Intracellular Signaling MAPK Pathway After Cerebral Ischemia–Reperfusion Injury. Neurochemical Research, 2012, 37, 1568-1577.	3.3	70
8	Membrane ion transport systems during oxidative stress in rodent brain: Protective effect of stobadine and other antioxidants. Life Sciences, 1999, 65, 1951-1958.	4.3	61
9	Mitochondrial Calcium Transport and Mitochondrial Dysfunction After Global Brain Ischemia in Rat Hippocampus. Neurochemical Research, 2009, 34, 1469-1478.	3.3	55
10	Molecular Mechanisms Leading to Neuroprotection/Ischemic Tolerance: Effect of Preconditioning on the Stress Reaction of Endoplasmic Reticulum. Cellular and Molecular Neurobiology, 2009, 29, 917-925.	3.3	53
11	Molecular Analysis of Endoplasmic Reticulum Stress Response After Global Forebrain Ischemia/Reperfusion in Rats: Effect of Neuroprotectant Simvastatin. Cellular and Molecular Neurobiology, 2009, 29, 181-192.	3.3	48
12	Effect of aging on the expression of intracellular Ca2+ transport proteins in a rat heart. Molecular and Cellular Biochemistry, 2007, 301, 219-226.	3.1	39
13	Alterations Induced by Ischemic Preconditioning on Secretory Pathways Ca2+-ATPase (SPCA) Gene Expression and Oxidative Damage After Global Cerebral Ischemia/Reperfusion in Rats. Cellular and Molecular Neurobiology, 2009, 29, 909-916.	3.3	36
14	Effect of aging on formation of reactive oxygen species byâ€ [–] mitochondria ofâ€ [–] rat heart. General Physiology and Biophysics, 2014, 32, 415-420.	0.9	36
15	Mechanisms Involved in the Ischemic Tolerance in Brain: Effect of the Homocysteine. Cellular and Molecular Neurobiology, 2015, 35, 7-15.	3.3	36
16	The role of plasma membrane CA2+ Pumps (PMCAs) in pathologies of mammalian cells. Frontiers in Bioscience - Landmark, 2002, 7, d53.	3.0	35
17	Change in fluidity of brain endoplasmic reticulum membranes by oxygen free radicals: A protective effect of stobadine, α-tocopherol acetate, and butylated hydroxytoluene. Neurochemical Research, 1995, 20, 815-820.	3.3	33
18	Impact of Ginkgo Biloba Extract EGb 761 on Ischemia/Reperfusion – Induced Oxidative Stress Products Formation in Rat Forebrain. Cellular and Molecular Neurobiology, 2006, 26, 1341-1351.	3.3	32

#	Article	IF	CITATIONS
19	Androgen receptor and soy isoflavones in prostate cancer (Review). Molecular and Clinical Oncology, 2018, 10, 191-204.	1.0	32
20	Iron-induced lipid peroxidation and protein modification in endoplasmic reticulum membranes. Protection by stobadine. International Journal of Biochemistry and Cell Biology, 2000, 32, 539-547.	2.8	31
21	Ischemia-Induced Mitochondrial Apoptosis is Significantly Attenuated by Ischemic Preconditioning. Cellular and Molecular Neurobiology, 2009, 29, 901-908.	3.3	31
22	The role of plasma membrane CA sup 2 sup Pumps PMCAs in pathologies of mammalian cells. Frontiers in Bioscience - Landmark, 2002, 7, d53-84.	3.0	30
23	Myocardial Ca ²⁺ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac deathThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research Canadian Journal of Physiology and Pharmacology, 2009, 87, 1120-1129.	1.4	30
24	The role of CYP17A1 in prostate cancer development: structure, function, mechanism of action, genetic variations and its inhibition. General Physiology and Biophysics, 2017, 36, 487-499.	0.9	29
25	Alteration in Rabbit Brain Endoplasmic Reticulum Ca2+ Transport by Free Oxygen Radicals in Vitro. Biochemical and Biophysical Research Communications, 1994, 199, 63-69.	2.1	27
26	The Effect of Aging on Mitochondrial Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex. Neurochemical Research, 2016, 41, 2160-2172.	3.3	27
27	Oxidative modifications of cardiac mitochondria and inhibition of cytochrome <i>c</i> oxidase activity by 4-hydroxynonenal. Redox Report, 2007, 12, 211-218.	4.5	26
28	Iron-induced inhibition of Na+, K(+)-ATPase and Na+/Ca2+ exchanger in synaptosomes: protection by the pyridoindole stobadine. Neurochemical Research, 1997, 22, 1523-1529.	3.3	23
29	Distribution of plasma membrane Ca2+ pump (PMCA) isoforms in the gerbil brain: effect of ischemia-reperfusion injury. Neurochemistry International, 1999, 35, 221-227.	3.8	23
30	Distribution of Secretory Pathway Ca 2+ ATPase (SPCA1) in Neuronal and Glial Cell Cultures. Cellular and Molecular Neurobiology, 2006, 26, 1353-1363.	3.3	23
31	Effects of mild hyperhomocysteinemia on electron transport chain complexes, oxidative stress, and protein expression in rat cardiac mitochondria. Molecular and Cellular Biochemistry, 2016, 411, 261-270.	3.1	22
32	Effect of Long-Term Normobaric Hyperoxia on Oxidative Stress in Mitochondria of the Guinea Pig Brain. Neurochemical Research, 2011, 36, 1475-1481.	3.3	21
33	Effect of Ischemic Preconditioning on Mitochondrial Dysfunction and Mitochondrial P53 Translocation after Transient Global Cerebral Ischemia in Rats. Neurochemical Research, 2007, 32, 1823-1832.	3.3	19
34	Lipid peroxidation both inhibits Ca2 â€ATPase and increases Ca2 permeability of endoplasmic reticulum membrane. IUBMB Life, 1997, 41, 647-655.	3.4	18
35	Age-related Oxidative Modifications of Proteins and Lipids in Rat Brain. Neurochemical Research, 2007, 32, 1351-1356.	3.3	18
36	Time Course of Peripheral Oxidative Stress as Consequence of Global Ischaemic Brain Injury in Rats. Cellular and Molecular Neurobiology, 2008, 28, 431-441.	3.3	18

#	Article	IF	CITATIONS
37	Global brain ischemia in rats is associated with mitochondrial release and downregulation of Mfn2 in the cerebral cortex, but not the hippocampus. International Journal of Molecular Medicine, 2019, 43, 2420-2428.	4.0	18
38	Effect of free radical scavengers on myocardial function and Na+, K+-ATPase activity in stunned rabbit myocardium. Scandinavian Cardiovascular Journal, 2005, 39, 213-219.	1.2	16
39	Response of secretory pathways Ca2+ ATPase gene expression to†hyperhomocysteinemia and/or†ischemic preconditioning in†rat cerebral cortex and†hippocampus. General Physiology and Biophysics, 2011, 30, 61-69.	0.9	15
40	Phosphorylation by Protein Kinases A and C of Myofibrillar Proteins in Rabbit Stunned and Non-stunned Myocardium. Journal of Molecular and Cellular Cardiology, 1997, 29, 3189-3202.	1.9	14
41	Tyrosine nitration of mitochondrial proteins during myocardial ischemia and reperfusion. Journal of Physiology and Biochemistry, 2019, 75, 217-227.	3.0	11
42	Differential profiling of prostate tumors versus benign prostatic tissues by using a 2DE-MALDI-TOF-based proteomic approach. Neoplasma, 2021, 68, 154-164.	1.6	11
43	Cross-talk of intracellular calcium stores in the response to neuronal ischemia and ischemic tolerance. General Physiology and Biophysics, 2009, 28 Spec No Focus, F104-14.	0.9	11
44	The effects of ryanodine on calcium uptake by the sarcoplasmic reticulum of ischemic and reperfused rat myocardium. Fundamental and Clinical Pharmacology, 1997, 11, 315-321.	1.9	7
45	Calcium uptake by the sarcoplasmic reticulum, high energy content and histological changes in ischemic cardiomyopathy. Cardiovascular Research, 1998, 37, 515-523.	3.8	7
46	Effects of long-term oxygen treatment on α-ketoglutarate dehydrogenase activity and oxidative modifications in mitochondria of the guinea pig heart. European Journal of Medical Research, 2009, 14, 116-20.	2.2	7
47	Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. Physiological Research, 2019, 68, 883-892.	0.9	7
48	Ischemia-induced inhibition of active calcium transport into gerbil brain microsomes: effect of anesthetics and models of ischemia. Neurochemical Research, 2000, 25, 285-292.	3.3	6
49	Effect of normobaric oxygen treatment on oxidative stress and enzyme activities in guinea pig heart. General Physiology and Biophysics, 2012, 31, 179-184.	0.9	6
50	A comparison of albumin removal procedures for proteomic analysis ofÂblood plasma. General Physiology and Biophysics, 2019, 38, 305-314.	0.9	6
51	Effect of myocardial stunning on thiol status, myofibrillar ATPase and troponin I proteolysis. Molecular and Cellular Biochemistry, 2002, 233, 145-152.	3.1	4
52	Metabolic Changes Induced by Cerebral Ischemia, the Effect of Ischemic Preconditioning, and Hyperhomocysteinemia. Biomolecules, 2022, 12, 554.	4.0	3
53	Proteomic analysis of mitochondrial proteins in the guinea pig heart following long-term normobaric hyperoxia. Molecular and Cellular Biochemistry, 2017, 434, 61-73.	3.1	2
54	Effect of hyperhomocysteinemia on rat cardiac sarcoplasmic reticulum. Molecular and Cellular Biochemistry, 2022, 477, 1621-1628.	3.1	2

#	Article	IF	CITATIONS
55	Role of Genetic Variations in <i>CDK2</i> , <i>CCNE1</i> and <i>p27^{KIP1}</i> in Prostate Cancer. Cancer Genomics and Proteomics, 2022, 19, 362-371.	2.0	2
56	Total antioxidant capacity and oxidative damage to proteins and lipids in aged rat heart. Journal of Molecular and Cellular Cardiology, 2007, 42, S117-S118.	1.9	1
57	Association of MDM2 T309G (rs2279744) Polymorphism and Expression Changes With Risk of Prostate Cancer in the Slovak Population. Anticancer Research, 2020, 40, 6257-6264.	1.1	1
58	Crucial role of Heart cell Ca2+ handling in initiation, sustaining and termination of lethal arrhythmias. Journal of Molecular and Cellular Cardiology, 2007, 42, S7.	1.9	0
59	Study of the rat heart low-molecular metabolites by magnetic resonance spectroscopy. Journal of Molecular and Cellular Cardiology, 2007, 42, S240.	1.9	Ο
60	Accumulation of 4-hydroxynonenal protein adducts and Bax protein in rat hearts during aging. Journal of Molecular and Cellular Cardiology, 2008, 44, 723.	1.9	0
61	Expression of Ca2+-handling proteins in aged rat heart. Journal of Molecular and Cellular Cardiology, 2008, 44, 723-724.	1.9	0
62	Mechanisms of Ischemic Induced Neuronal Death and Ischemic Tolerance. , 0, , .		0
63	Neuroprotection exerted by ischemic preconditioning in rat hippocampus involves extracellular signal receptor changes. SpringerPlus, 2015, 4, .	1.2	Ο
64	Forebrain Ischemic Stroke and the Phenomenon of Ischemic Tolerance: Is Homocysteine Foe or Friend?. , 0, , .		0
65	Ischemia-Reperfusion Decreases Protein Levels of InsP3 Receptor and PMCA but not Organellar Ca2+ Pump and Calreticulin in Gerbil Forebrain. , 1997, , 375-382.		Ο
66	Immunological and Functional Identification of Intracellular Ca2+ Store from Gerbil Forebrain. , 1997, , 383-388.		0