
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6844506/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Intensified microbial sulfate reduction in the deep Dead Sea during the early Holocene Mediterranean sapropel 1 deposition. Geobiology, 2022, 20, 518-532.                                   | 2.4  | 2         |
| 2  | Modelling the Effects of Non-Steady State Transport Dynamics on the Sulfur and Oxygen Isotope<br>Composition of Sulfate in Sedimentary Pore Fluids. Frontiers in Earth Science, 2021, 8, .   | 1.8  | 7         |
| 3  | Semiquantitative Estimates of Rainfall Variability During the 8.2 kyr Event in California Using<br>Speleothem Calcium Isotope Ratios. Geophysical Research Letters, 2021, 48, e2020GL089154. | 4.0  | 10        |
| 4  | Controls on the Precipitation of Carbonate Minerals Within Marine Sediments. Frontiers in Earth Science, 2021, 9, .                                                                          | 1.8  | 21        |
| 5  | The Carbon-Sulfur Link in the Remineralization of Organic Carbon in Surface Sediments. Frontiers in Earth Science, 2021, 9, .                                                                | 1.8  | 6         |
| 6  | A quantification of the effect of diagenesis on the paleoredox record in mid-Proterozoic sedimentary rocks. Geology, 2021, 49, 1143-1147.                                                    | 4.4  | 7         |
| 7  | On calcium-to-alkalinity anomalies in the North Pacific, Red Sea, Indian Ocean and Southern Ocean.<br>Geochimica Et Cosmochimica Acta, 2021, 303, 1-14.                                      | 3.9  | 2         |
| 8  | Testing for ocean acidification during the Early Toarcian using δ44/40Ca and δ88/86Sr. Chemical<br>Geology, 2021, 574, 120228.                                                               | 3.3  | 7         |
| 9  | Partitioning riverine sulfate sources using oxygen and sulfur isotopes: Implications for carbon budgets of large rivers. Earth and Planetary Science Letters, 2021, 567, 116957.             | 4.4  | 27        |
| 10 | Assessing Sedimentary Boundary Layer Calcium Carbonate Precipitation and Dissolution Using the Calcium Isotopic Composition of Pore Fluids. Frontiers in Earth Science, 2021, 9, .           | 1.8  | 4         |
| 11 | Early diagenesis of sulfur in Bornholm Basin sediments: The role of upward diffusion of isotopically<br>"heavy―sulfide. Geochimica Et Cosmochimica Acta, 2021, 313, 359-377.                 | 3.9  | 7         |
| 12 | The microbially driven formation of siderite in salt marsh sediments. Geobiology, 2020, 18, 207-224.                                                                                         | 2.4  | 23        |
| 13 | The calcium isotopic composition of carbonate hardground cements: A new record of changes in ocean chemistry?. Chemical Geology, 2020, 540, 119490.                                          | 3.3  | 7         |
| 14 | Dissolved Strontium, Sr/Ca Ratios, and the Abundance of Acantharia in the Indian and Southern<br>Oceans. ACS Earth and Space Chemistry, 2020, 4, 802-811.                                    | 2.7  | 8         |
| 15 | Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late<br>Ordovician mass extinction. Nature Communications, 2020, 11, 2297.                              | 12.8 | 42        |
| 16 | Early diagenesis of iron and sulfur in Bornholm Basin sediments: The role of near-surface pyrite<br>formation. Geochimica Et Cosmochimica Acta, 2020, 284, 43-60.                            | 3.9  | 33        |
| 17 | Molybdenum geochemistry in salt marsh pond sediments. Geochimica Et Cosmochimica Acta, 2020, 284,<br>75-91.                                                                                  | 3.9  | 14        |
| 18 | Triple oxygen isotope insight into terrestrial pyrite oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7650-7657                       | 7.1  | 39        |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chemical Composition of Carbonate Hardground Cements as Reconstructive Tools for Phanerozoic<br>Pore Fluids. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008448.               | 2.5  | 5         |
| 20 | High-temperature kinetic isotope fractionation of calcium in epidosites from modern and ancient seafloor hydrothermal systems. Earth and Planetary Science Letters, 2020, 535, 116101.    | 4.4  | 11        |
| 21 | Glacial influence on the iron and sulfur cycles in Arctic fjord sediments (Svalbard). Geochimica Et<br>Cosmochimica Acta, 2020, 280, 423-440.                                             | 3.9  | 20        |
| 22 | Strontium stratigraphy of the Oligocene–Early Miocene shellbeds of the Kutch Basin, western India, and its implications. Lethaia, 2020, 53, 382-395.                                      | 1.4  | 3         |
| 23 | The effect of temperature on sulfur and oxygen isotope fractionation by sulfate reducing bacteria<br>( <i>Desulfococcus multivorans</i> ). FEMS Microbiology Letters, 2020, 367, .        | 1.8  | 9         |
| 24 | Calcium isotope fractionation during microbially induced carbonate mineral precipitation.<br>Geochimica Et Cosmochimica Acta, 2020, 277, 37-51.                                           | 3.9  | 9         |
| 25 | Stable Isotope Analysis of Intact Oxyanions Using Electrospray Quadrupole-Orbitrap Mass<br>Spectrometry. Analytical Chemistry, 2020, 92, 3077-3085.                                       | 6.5  | 30        |
| 26 | Sub-permafrost methane seepage from open-system pingos in Svalbard. Cryosphere, 2020, 14, 3829-3842.                                                                                      | 3.9  | 18        |
| 27 | Creek Dynamics Determine Pond Subsurface Geochemical Heterogeneity in East Anglian (UK) Salt<br>Marshes. Frontiers in Earth Science, 2019, 7, .                                           | 1.8  | 14        |
| 28 | Large sulfur isotope fractionation by bacterial sulfide oxidation. Science Advances, 2019, 5, eaaw1480.                                                                                   | 10.3 | 57        |
| 29 | The Sedimentary Carbon-Sulfur-Iron Interplay – A Lesson From East Anglian Salt Marsh Sediments.<br>Frontiers in Earth Science, 2019, 7, .                                                 | 1.8  | 31        |
| 30 | The Production and Fate of Volatile Organosulfur Compounds in Sulfidic and Ferruginous Sediment.<br>Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3390-3402.              | 3.0  | 14        |
| 31 | Calcium isotopes as a record of the marine calcium cycle versus carbonate diagenesis during the late<br>Ediacaran. Chemical Geology, 2019, 529, 119319.                                   | 3.3  | 8         |
| 32 | Local and Regional Indian Summer Monsoon Precipitation Dynamics During Termination II and the Last<br>Interglacial. Geophysical Research Letters, 2019, 46, 12454-12463.                  | 4.0  | 15        |
| 33 | Seawater Chemistry Through Phanerozoic Time. Annual Review of Earth and Planetary Sciences, 2019, 47, 197-224.                                                                            | 11.0 | 38        |
| 34 | Physical weathering of carbonate host-rock by precipitation of soluble salts in caves: A case study in El Orón-Arco Cave (Region of Murcia, SE Spain). Chemical Geology, 2019, 521, 1-11. | 3.3  | 4         |
| 35 | Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments.<br>Earth and Planetary Science Letters, 2019, 519, 40-49.                                 | 4.4  | 35        |
| 36 | Seasonal Dynamics of Methane and Carbon Dioxide Evasion From an Open System Pingo: Lagoon Pingo,<br>Svalbard. Frontiers in Earth Science, 2019, 7, .                                      | 1.8  | 19        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Experimental calibration of clumped isotopes in siderite between 8.5 and 62â€ <sup>-</sup> °C and its application as paleo-thermometer in paleosols. Geochimica Et Cosmochimica Acta, 2019, 254, 1-20. | 3.9  | 19        |
| 38 | Disentangling Diagenesis From the Rock Record: An Example From the Permoâ€Triassic Wordie Creek<br>Formation, East Greenland. Geochemistry, Geophysics, Geosystems, 2018, 19, 99-113.                  | 2.5  | 6         |
| 39 | Two-billion-year-old evaporites capture Earth's great oxidation. Science, 2018, 360, 320-323.                                                                                                          | 12.6 | 112       |
| 40 | Lithium isotopic composition of benthic foraminifera: A new proxy for paleo-pH reconstruction.<br>Geochimica Et Cosmochimica Acta, 2018, 236, 336-350.                                                 | 3.9  | 45        |
| 41 | Spatial and Temporal Dynamics of Dissolved Organic Carbon, Chlorophyll, Nutrients, and Trace<br>Metals in Maritime Antarctic Snow and Snowmelt. Frontiers in Earth Science, 2018, 6, .                 | 1.8  | 15        |
| 42 | Extraterrestrial dust, the marine lithologic record, and global biogeochemical cycles. Geology, 2018, 46, 863-866.                                                                                     | 4.4  | 14        |
| 43 | Comparing Rhizon samplers and centrifugation for poreâ€water separation in studies of the marine carbonate system in sediments. Limnology and Oceanography: Methods, 2018, 16, 828-839.                | 2.0  | 16        |
| 44 | The Calcium Isotope Systematics of the Late Quaternary Dead Sea Basin Lakes. Geochemistry,<br>Geophysics, Geosystems, 2018, 19, 4260-4273.                                                             | 2.5  | 1         |
| 45 | Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea.<br>Nature Communications, 2018, 9, 3615.                                                           | 12.8 | 26        |
| 46 | Calcium isotope fractionation in sedimentary pore fluids from ODP Leg 175: Resolving carbonate recrystallization. Geochimica Et Cosmochimica Acta, 2018, 236, 121-139.                                 | 3.9  | 28        |
| 47 | The role of microbial sulfate reduction in calcium carbonate polymorph selection. Geochimica Et<br>Cosmochimica Acta, 2018, 237, 184-204.                                                              | 3.9  | 46        |
| 48 | The sulfur cycle below the sulfate-methane transition of marine sediments. Geochimica Et<br>Cosmochimica Acta, 2018, 239, 74-89.                                                                       | 3.9  | 44        |
| 49 | Cenozoic record of δ34S in foraminiferal calcite implies an early Eocene shift to deep-ocean sulfide<br>burial. Nature Geoscience, 2018, 11, 761-765.                                                  | 12.9 | 50        |
| 50 | Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate. Precambrian<br>Research, 2017, 290, 113-125.                                                                         | 2.7  | 38        |
| 51 | Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochimica Et Cosmochimica Acta, 2017, 203, 364-380.                             | 3.9  | 57        |
| 52 | Remobilization of crustal carbon may dominate volcanic arc emissions. Science, 2017, 357, 290-294.                                                                                                     | 12.6 | 152       |
| 53 | Rates and Cycles of Microbial Sulfate Reduction in the Hyper-Saline Dead Sea over the Last 200 kyrs<br>from Sedimentary δ34S and δ18O(SO4). Frontiers in Earth Science, 2017, 5, .                     | 1.8  | 6         |
| 54 | Impact of Aeolian Dry Deposition of Reactive Iron Minerals on Sulfur Cycling in Sediments of the Gulf<br>of Aqaba. Frontiers in Microbiology, 2017, 8, 1131.                                           | 3.5  | 28        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage.<br>Frontiers in Microbiology, 2017, 8, 1564.                                                                                                | 3.5  | 14        |
| 56 | Reconstructing Earth's Climate History. Inquiry-Based Exercises for Lab and Class. Kristen St John , R.<br>Mark Leckie , Kate Pound , Megan Jones , Lawrence Krissek . Review by Dr Alexandra V. Turchyn.<br>Geological Magazine, 2016, 153, . | 1.5  | 0         |
| 57 | Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385. Global and<br>Planetary Change, 2016, 141, 82-90.                                                                                                    | 3.5  | 28        |
| 58 | Isotopic analysis of sulfur cycling and gypsum vein formation in a natural CO2 reservoir. Chemical Geology, 2016, 436, 72-83.                                                                                                                  | 3.3  | 15        |
| 59 | Geochemical evidence for cryptic sulfur cycling in salt marsh sediments. Earth and Planetary Science<br>Letters, 2016, 453, 23-32.                                                                                                             | 4.4  | 42        |
| 60 | Sulfur isotope patterns of iron sulfide and barite nodules in the Upper Cretaceous Chalk of England<br>and their regional significance in the origin of coloured chalks. Acta Geologica Polonica, 2016, 66,<br>227-256.                        | 0.9  | 3         |
| 61 | Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Science Advances, 2016, 2, e1501235.                                                                                                   | 10.3 | 65        |
| 62 | Diffusive cation fluxes in deep-sea sediments and insight into the global geochemical cycles of calcium, magnesium, sodium and potassium. Marine Geology, 2016, 373, 64-77.                                                                    | 2.1  | 46        |
| 63 | Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations.<br>Geochemical Transactions, 2015, 16, 7.                                                                                                            | 0.7  | 25        |
| 64 | A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane. Geology, 2015, 43, 619-622.                                                                                                                                    | 4.4  | 55        |
| 65 | Coupled measurements of δ 18 O and δ D of hydration water and salinity of fluid inclusions in gypsum<br>from the Messinian Yesares Member, Sorbas Basin (SE Spain). Earth and Planetary Science Letters, 2015,<br>430, 499-510.                | 4.4  | 45        |
| 66 | Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proceedings of the United States of America, 2015, 112, 13591-13596.                                                                                          | 7.1  | 159       |
| 67 | Controls on the abiotic exchange between aqueous sulfate and water under laboratory conditions.<br>Limnology and Oceanography: Methods, 2014, 12, 166-173.                                                                                     | 2.0  | 13        |
| 68 | Significant contribution of authigenic carbonate to marine carbon burial. Nature Geoscience, 2014, 7, 201-204.                                                                                                                                 | 12.9 | 115       |
| 69 | Nonâ€enzymatic glycolysis and pentose phosphate pathwayâ€like reactions in a plausible<br><scp>A</scp> rchean ocean. Molecular Systems Biology, 2014, 10, 725.                                                                                 | 7.2  | 182       |
| 70 | Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer.<br>Geobiology, 2014, 12, 511-528.                                                                                                                | 2.4  | 43        |
| 71 | Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments. Estuarine, Coastal and Shelf Science, 2014, 142, 4-11.                                                                                 | 2.1  | 63        |
| 72 | Hydrocarbon-related microbial processes in the deep sediments of the Eastern Mediterranean<br>Levantine Basin. FEMS Microbiology Ecology, 2014, 87, 780-796.                                                                                   | 2.7  | 35        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                           | IF                     | CITATIONS                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|
| 73 | Drilling and sampling a natural CO2 reservoir: Implications for fluid flow and CO2-fluid–rock reactions during CO2 migration through the overburden. Chemical Geology, 2014, 369, 51-82.                                                                                                                                                                                                                                                          | 3.3                    | 96                         |
| 74 | Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4139-47.                                                                                                                                                                                                                                                                  | 7.1                    | 112                        |
| 75 | Multiple sulfur isotope constraints on the modern sulfur cycle. Earth and Planetary Science Letters, 2014, 396, 14-21.<br>The preservation of <mml:math <="" altimg="si1.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>4.4</td><td>152</td></mml:math>                                                                                                                                                                            | 4.4                    | 152                        |
| 76 | overflow="scroll"> <mml:mi>l'</mml:mi> <mml:mmultiscripts><mml:mrow><mml:mi<br>mathvariant="normal"&gt;S</mml:mi<br></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi<br>mathvariant="normal"&gt;SO</mml:mi<br></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow>/&gt;<mml:mprescripts></mml:mprescripts><mml:none< td=""><td>sub<sup>4.4</sup>/mm</td><td>nl:mrow&gt;<mm< td=""></mm<></td></mml:none<></mml:msub></mml:mrow></mml:mmultiscripts> | sub <sup>4.4</sup> /mm | nl:mrow> <mm< td=""></mm<> |
| 77 | <pre>/&gt; <mml:mplescripts></mml:mplescripts> <mml:mn>34</mml:mn>    and <mml:math 2013,="" 36-46.<="" 374,="" along="" and="" earth="" evidence="" for="" himalayas.="" letters,="" lsotope="" marsyandi="" nepal,="" planetary="" pre="" precipitation="" river,="" science="" secondary="" sulfide="" the=""></mml:math></pre>                                                                                                                | 4.4                    | 64                         |
| 78 | Sulfur degassing due to contact metamorphism during flood basalt eruptions. Geochimica Et<br>Cosmochimica Acta, 2013, 120, 263-279.                                                                                                                                                                                                                                                                                                               | 3.9                    | 17                         |
| 79 | Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochimica Et Cosmochimica Acta, 2013, 118, 98-117.                                                                                                                                                                                                                                                                                        | 3.9                    | 155                        |
| 80 | The remarkable longevity of submarine plumes: Implications for the hydrothermal input of iron to the deep-ocean. Earth and Planetary Science Letters, 2013, 382, 66-76.                                                                                                                                                                                                                                                                           | 4.4                    | 23                         |
| 81 | Reconstructing the oxygen isotope composition of late Cambrian and Cretaceous hydrothermal vent fluid. Geochimica Et Cosmochimica Acta, 2013, 123, 440-458.                                                                                                                                                                                                                                                                                       | 3.9                    | 21                         |
| 82 | Fire and Brimstone: The Microbially Mediated Formation of Elemental Sulfur Nodules from an Isotope<br>and Major Element Study in the Paleo-Dead Sea. PLoS ONE, 2013, 8, e75883.                                                                                                                                                                                                                                                                   | 2.5                    | 15                         |
| 83 | Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of<br>Cerro del Almirez, Spain. Earth and Planetary Science Letters, 2012, 327-328, 50-60.                                                                                                                                                                                                                                                      | 4.4                    | 153                        |
| 84 | Late Glacial temperature and precipitation changes in the lowland Neotropics by tandem measurement<br>of δ180 in biogenic carbonate and gypsum hydration water. Geochimica Et Cosmochimica Acta, 2012, 77,<br>352-368.                                                                                                                                                                                                                            | 3.9                    | 68                         |
| 85 | Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments. Geochimica Et Cosmochimica Acta, 2011, 75, 7081-7098.                                                                                                                                                                                                                                                                              | 3.9                    | 56                         |
| 86 | Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth and<br>Planetary Science Letters, 2011, 303, 143-152.                                                                                                                                                                                                                                                                                              | 4.4                    | 86                         |
| 87 | Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8543-8548.                                                                                                                                                                                                                                                                            | 7.1                    | 215                        |
| 88 | Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach. Geochimica Et Cosmochimica Acta, 2010, 74, 2011-2024.                                                                                                                                                                                                                                                                    | 3.9                    | 89                         |
| 89 | Geologic reconnaissance of the island of Velika Palagruža (central Adriatic, Croatia). Geologia<br>Croatica, 2009, 62, 75-94.                                                                                                                                                                                                                                                                                                                     | 0.8                    | 16                         |
| 90 | Stable isotope analysis of the Cretaceous sulfur cycle. Earth and Planetary Science Letters, 2009, 285, 115-123.                                                                                                                                                                                                                                                                                                                                  | 4.4                    | 43                         |

| #  | Article                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | A Contemporary Microbially Maintained Subglacial Ferrous "Ocean". Science, 2009, 324, 397-400.                                                      | 12.6 | 243       |
| 92 | Cenozoic evolution of the sulfur cycle: Insight from oxygen isotopes in marine sulfate. Earth and<br>Planetary Science Letters, 2006, 241, 763-779. | 4.4  | 97        |
| 93 | Oxygen isotopic composition of sulfate in deep sea pore fluid: evidence for rapid sulfur cycling.<br>Geobiology, 2006, 4, 191-201.                  | 2.4  | 50        |
| 94 | Oxygen Isotope Constraints on the Sulfur Cycle over the Past 10 Million Years. Science, 2004, 303, 2004-2007.                                       | 12.6 | 123       |