
Franco Tardani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6844496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interactions between single-walled carbon nanotubes and lysozyme. Journal of Colloid and Interface Science, 2011, 355, 342-347.	5.0	38
2	Phase Behavior of DNA-Based Dispersions containing Carbon Nanotubes: Effects of Added Polymers and Ionic Strength on Excluded Volume. Journal of Physical Chemistry C, 2012, 116, 9888-9894.	1.5	25
3	Delivery of RNA and Its Intracellular Translation into Protein Mediated by SDS-CTAB Vesicles: Potential Use in Nanobiotechnology. BioMed Research International, 2013, 2013, 1-6.	0.9	23
4	Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines. Nanotechnology, 2016, 27, 155704.	1.3	22
5	Shear Rheology Control of Wrinkles and Patterns in Graphene Oxide Films. Langmuir, 2018, 34, 2996-3002.	1.6	22
6	Elasticity of Dispersions Based on Carbon Nanotubes Dissolved in a Lyotropic Nematic Solvent. Journal of Physical Chemistry C, 2011, 115, 9424-9431.	1.5	20
7	Attempts to control depletion in the surfactant-assisted stabilization of single-walled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 123-128.	2.3	19
8	Infrared Nanospectroscopy Reveals DNA Structural Modifications upon Immobilization onto Clay Nanotubes. Nanomaterials, 2021, 11, 1103.	1.9	14
9	Lysozyme binds onto functionalized carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2013, 108, 16-22.	2.5	12
10	Phase Behavior of DNA-Stabilized Carbon Nanotubes Dispersions: Association with Oppositely-Charged Additives. Journal of Physical Chemistry C, 2014, 118, 9268-9274.	1.5	11
11	Shear Orientation in Nematic Carbon Nanotube Dispersions: A Combined NMR Investigation. Journal of Physical Chemistry C, 2013, 117, 8556-8562.	1.5	10
12	Deoxycholic acid and l-Phenylalanine enrich their hydrogel properties when combined in a zwitterionic derivative. Journal of Colloid and Interface Science, 2019, 554, 453-462.	5.0	9
13	Experimental Evidence of Single-Stranded DNA Adsorption on Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2020, 124, 2514-2525.	1.2	9
14	Size and Charge Modulation of Surfactant-Based Vesicles. Journal of Physical Chemistry B, 2011, 115, 12751-12758.	1.2	8
15	Confining ss-DNA/carbon nanotube complexes in ordered droplets. Soft Matter, 2014, 10, 1024.	1.2	8
16	Encapsulating carbon nanotubes in aqueous ds-DNA anisotropic phases: shear orientation and rheological properties. RSC Advances, 2013, 3, 25917.	1.7	7
17	Effects of single-walled carbon nanotubes on lysozyme gelation. Colloids and Surfaces B: Biointerfaces, 2014, 121, 165-170.	2.5	7
18	Association of DNA-Stabilized Carbon Nanotubes and Cationic Surfactants: Ionic Strength and Chain Length Effects. Journal of Physical Chemistry C, 2016, 120, 2941-2949.	1.5	6

FRANCO TARDANI

#	Article	IF	CITATIONS
19	lon Distribution around Synthetic Vesicles of the Cat-Anionic Type. Journal of Physical Chemistry B, 2014, 118, 557-566.	1.2	5
20	Dispersability of Carbon Nanotubes in Biopolymer-Based Fluids. Crystals, 2015, 5, 74-90.	1.0	5
21	Titration of DNA/Carbon Nanotube Complexes with Double-Chained Oppositely Charged Surfactants. Nanomaterials, 2015, 5, 722-736.	1.9	5
22	Salt enhanced sedimentation of halloysite nanotubes for precise determination of DNA adsorption isotherm. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125400.	2.3	5
23	Block co-polymers undergoing supra-molecular association. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 374-380.	2.3	4
24	Formation and Properties of Gels Based on Lipo-plexes. Journal of Physical Chemistry B, 2014, 118, 6107-6116.	1.2	1
25	Binding of Protein-Functionalized Entities onto Synthetic Vesicles. , 0, , .		О