Eric E Swayze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/684423/publications.pdf Version: 2024-02-01

FDIC F SWAVZE

#	Article	IF	CITATIONS
1	RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform. Annual Review of Pharmacology and Toxicology, 2010, 50, 259-293.	9.4	1,136
2	Targeting Huntingtin Expression in Patients with Huntington's Disease. New England Journal of Medicine, 2019, 380, 2307-2316.	27.0	493
3	Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary <i>N</i> -acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Research, 2014, 42, 8796-8807.	14.5	465
4	Fully 2â€~-Modified Oligonucleotide Duplexes with Improved in Vitro Potency and Stability Compared to Unmodified Small Interfering RNA. Journal of Medicinal Chemistry, 2005, 48, 901-904.	6.4	416
5	Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Research, 2007, 35, 687-700.	14.5	361
6	Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Science Translational Medicine, 2017, 9, .	12.4	354
7	Positional Effect of Chemical Modifications on Short Interference RNA Activity in Mammalian Cells. Journal of Medicinal Chemistry, 2005, 48, 4247-4253.	6.4	259
8	Single-Stranded RNAs Use RNAi to Potently and Allele-Selectively Inhibit Mutant Huntingtin Expression. Cell, 2012, 150, 895-908.	28.9	250
9	Single-Stranded siRNAs Activate RNAi in Animals. Cell, 2012, 150, 883-894.	28.9	239
10	Short Antisense Oligonucleotides with Novel 2′â^'4′ Conformationaly Restricted Nucleoside Analogues Show Improved Potency without Increased Toxicity in Animals. Journal of Medicinal Chemistry, 2009, 52, 10-13.	6.4	236
11	Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Research, 2009, 37, 70-77.	14.5	189
12	Synthesis and Biophysical Evaluation of 2′,4′-Constrained 2′ <i>O</i> -Methoxyethyl and 2′,4′-Const 2′ <i>O</i> -Ethyl Nucleic Acid Analogues. Journal of Organic Chemistry, 2010, 75, 1569-1581.	rained	182
13	Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. Journal of Clinical Investigation, 2018, 128, 3558-3567.	8.2	171
14	LRRK2 Antisense Oligonucleotides Ameliorate α-Synuclein Inclusion Formation in a Parkinson's Disease Mouse Model. Molecular Therapy - Nucleic Acids, 2017, 8, 508-519.	5.1	167
15	Synthetic CRISPR RNA-Cas9–guided genome editing in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7110-7.	7.1	151
16	SAR by MS:  Discovery of a New Class of RNA-Binding Small Molecules for the Hepatitis C Virus:  Internal Ribosome Entry Site IIA Subdomain. Journal of Medicinal Chemistry, 2005, 48, 7099-7102.	6.4	149
17	SAR by MS:Â A Ligand Based Technique for Drug Lead Discovery Against Structured RNA Targets. Journal of Medicinal Chemistry, 2002, 45, 3816-3819.	6.4	148
18	Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Research, 2016, 44, 2093-2109.	14.5	142

#	Article	IF	CITATIONS
19	Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Research, 2013, 41, 9634-9650.	14.5	138
20	Allele-Selective Inhibition of Mutant <i>Huntingtin</i> Expression with Antisense Oligonucleotides Targeting the Expanded CAG Repeat. Biochemistry, 2010, 49, 10166-10178.	2.5	127
21	PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. Journal of Clinical Investigation, 2017, 128, 359-368.	8.2	117
22	In Vivo Evaluation of Candidate Allele-specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides. Molecular Therapy, 2014, 22, 2093-2106.	8.2	115
23	Improving RNA Interference in Mammalian Cells by 4â€~-Thio-Modified Small Interfering RNA (siRNA):Â Effect on siRNA Activity and Nuclease Stability When Used in Combination with 2â€~-O-Alkyl Modifications. Journal of Medicinal Chemistry, 2006, 49, 1624-1634.	6.4	113
24	Tcf4 Regulates Synaptic Plasticity, DNA Methylation, and Memory Function. Cell Reports, 2016, 16, 2666-2685.	6.4	113
25	Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Research, 2006, 34, 4467-4476.	14.5	108
26	Comprehensive Structure–Activity Relationship of Triantennary <i>N</i> -Acetylgalactosamine Conjugated Antisense Oligonucleotides for Targeted Delivery to Hepatocytes. Journal of Medicinal Chemistry, 2016, 59, 2718-2733.	6.4	107
27	Identification and Characterization of Modified Antisense Oligonucleotides Targeting <i>DMPK</i> in Mice and Nonhuman Primates for the Treatment of Myotonic Dystrophy Type 1. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 329-340.	2.5	106
28	Antisense oligonucleotide–mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight, 2018, 3, .	5.0	106
29	Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Research, 2019, 47, 1110-1122.	14.5	104
30	Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages. Nucleic Acids Research, 2014, 42, 13456-13468.	14.5	98
31	Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle. Nucleic Acids Research, 2019, 47, 6029-6044.	14.5	93
32	Allele-Specific Suppression of Mutant Huntingtin Using Antisense Oligonucleotides: Providing a Therapeutic Option for All Huntington Disease Patients. PLoS ONE, 2014, 9, e107434.	2.5	92
33	Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Science Translational Medicine, 2018, 10, .	12.4	89
34	Antibacterial Aminoglycosides with a Modified Mode of Binding to the Ribosomal-RNA Decoding Site. Angewandte Chemie - International Edition, 2004, 43, 6735-6738.	13.8	88
35	TricycloDNA-modified oligo-2′-deoxyribonucleotides reduce scavenger receptor B1 mRNA in hepatic and extra-hepatic tissues—a comparative study of oligonucleotide length, design and chemistry. Nucleic Acids Research, 2012, 40, 6135-6143.	14.5	86
36	Characterization of Low-Affinity Complexes between RNA and Small Molecules Using Electrospray Ionization Mass Spectrometryâ€. Journal of the American Chemical Society, 2000, 122, 9933-9938.	13.7	83

#	Article	IF	CITATIONS
37	An Exocyclic Methylene Group Acts As a Bioisostere of the 2′-Oxygen Atom in LNA. Journal of the American Chemical Society, 2010, 132, 14942-14950.	13.7	82
38	Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight, 2019, 4, .	5.0	80
39	Synthesis and biological evaluations of novel benzimidazoles as potential antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1217-1220.	2.2	79
40	2-Piperidin-4-yl-benzimidazoles with broad spectrum antibacterial activities. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3253-3256.	2.2	78
41	Design, Synthesis And Evaluation Of Constrained Methoxyethyl (cMOE) and Constrained Ethyl (cEt) Nucleoside Analogs. Nucleic Acids Symposium Series, 2008, 52, 553-554.	0.3	77
42	Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Research, 2019, 47, 5465-5479.	14.5	77
43	Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a) in Mice. Molecular Therapy - Nucleic Acids, 2016, 5, e317.	5.1	74
44	Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor. Nucleic Acids Research, 2017, 45, 2294-2306.	14.5	72
45	Antisense Oligonucleotides Containing Conformationally Constrained 2′,4′-(<i>N</i> -Methoxy)aminomethylene and 2′,4′-Aminooxymethylene and 2′- <i>O</i> ,4′- <i>C</i> -Aminomethylene Bridged Nucleoside Analogues Show Improved Potency in Animal Models. Journal of Medicinal Chemistry. 2010. 53. 1636-1650.	6.4	71
46	Synthesis, Improved Antisense Activity and Structural Rationale for the Divergent RNA Affinities of 3′-Fluoro Hexitol Nucleic Acid (FHNA and Ara-FHNA) Modified Oligonucleotides. Journal of the American Chemical Society, 2011, 133, 16642-16649.	13.7	69
47	Efficient Synthesis and Biological Evaluation of 5′-GalNAc Conjugated Antisense Oligonucleotides. Bioconjugate Chemistry, 2015, 26, 1451-1455.	3.6	68
48	Secondary amide-based linkers for solid phase organic synthesis. Tetrahedron Letters, 1997, 38, 8465-8468.	1.4	67
49	Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Research, 2015, 43, 2993-3011.	14.5	67
50	Structure and nuclease resistance of 2′,4′-constrained 2′-O-methoxyethyl (cMOE) and 2′-O-ethyl (cEt) modified DNAs. Chemical Communications, 2012, 48, 8195.	4.1	66
51	Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Science Translational Medicine, 2018, 10, .	12.4	63
52	Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Nucleic Acids Research, 2020, 48, 1691-1700.	14.5	63
53	Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Research, 2021, 49, 9026-9041.	14.5	61
54	α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson's disease. JCI Insight, 2021, 6, .	5.0	60

#	Article	IF	CITATIONS
55	Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. JCI Insight, 2019, 4, .	5.0	60
56	The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Nucleic Acids Research, 2021, 49, 657-673.	14.5	58
57	Disposition and Pharmacokinetics of a GalNAc3-Conjugated Antisense Oligonucleotide Targeting Human Lipoprotein (a) in Monkeys. Nucleic Acid Therapeutics, 2016, 26, 372-380.	3.6	57
58	Structure-Based Design, Synthesis, and A-Site rRNA Cocrystal Complexes of Functionally Novel Aminoglycoside Antibiotics: C2â€~Ââ€~ Ether Analogues of Paromomycin. Journal of Medicinal Chemistry, 2007, 50, 2352-2369.	6.4	54
59	Inhibitor-induced structural change in the HCV IRES domain IIa RNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7263-7268.	7.1	52
60	Allele-selective inhibition of ataxin-3 (ATX3) expression by antisense oligomers and duplex RNAs. Biological Chemistry, 2011, 392, 315-25.	2.5	49
61	Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver. Nucleic Acid Therapeutics, 2018, 28, 119-127.	3.6	49
62	Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Research, 2019, 47, 6045-6058.	14.5	48
63	Tobramycin analogues with C-5 aminoalkyl ether chains intended to mimic rings III and IV of paromomycin. Tetrahedron, 2003, 59, 983-993.	1.9	47
64	Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys. Molecular Therapy - Nucleic Acids, 2016, 5, e319.	5.1	46
65	Synergistic effect of phosphorothioate, 5′-vinylphosphonate and GalNAc modifications for enhancing activity of synthetic siRNA. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2817-2820.	2.2	44
66	Synthesis of Novel Nucleic Acid Mimicsviathe Stereoselective Intermolecular Radical Coupling of 3â€~-Iodo Nucleosides and Formaldoximes1. Journal of Organic Chemistry, 1996, 61, 8186-8199.	3.2	42
67	An Efficient Synthesis of Mimetics of Neamine for RNA Recognition. Organic Letters, 2001, 3, 1621-1623.	4.6	41
68	Design and Synthesis of Paromomycin-Related Heterocycle-Substituted Aminoglycoside Mimetics Based on a Mass Spectrometry RNA-Binding Assay. Angewandte Chemie - International Edition, 2003, 42, 3409-3412.	13.8	41
69	Synthesis and Antisense Properties of Fluoro Cyclohexenyl Nucleic Acid (F-CeNA), a Nuclease Stable Mimic of 2′-Fluoro RNA. Journal of Organic Chemistry, 2012, 77, 5074-5085.	3.2	41
70	Lipid Nanoparticles Improve Activity of Single-Stranded siRNA and Gapmer Antisense Oligonucleotides in Animals. ACS Chemical Biology, 2013, 8, 1402-1406.	3.4	41
71	ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy. Nucleic Acids Research, 2013, 41, 9570-9583.	14.5	41
72	Structure-based design, synthesis and A-site rRNA co-crystal complexes of novel amphiphilic aminoglycoside antibiotics with new binding modes: A synergistic hydrophobic effect against resistant bacteria. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7097-7101.	2.2	40

#	Article	IF	CITATIONS
73	Structure Activity Relationships of α-L-LNA Modified Phosphorothioate Gapmer Antisense Oligonucleotides in Animals. Molecular Therapy - Nucleic Acids, 2012, 1, e47.	5.1	38
74	A novel humanized mouse model of Huntington disease for preclinical development of therapeutics targeting mutant huntingtin alleles. Human Molecular Genetics, 2017, 26, ddx021.	2.9	37
75	Aryl urea analogs with broad-spectrum antibacterial activity. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5569-5572.	2.2	36
76	Conjugation of mono and di-GalNAc sugars enhances the potency of antisense oligonucleotides via ASGR mediated delivery to hepatocytes. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3690-3693.	2.2	36
77	The Positional Influence of the Helical Geometry of the Heteroduplex Substrate on Human RNase H1 Catalysis. Molecular Pharmacology, 2007, 71, 73-82.	2.3	35
78	The solid phase synthesis of trisubstituted 1,4-diazabicyclo[4.3.0]nonan-2-one scaffolds: On bead monitoring of heterocycle forming reactions using 15N NMR. Tetrahedron Letters, 1997, 38, 8643-8646.	1.4	34
79	Synthesis and evaluation of novel bacterial rRNA-binding benzimidazoles by mass spectrometry. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 695-699.	2.2	34
80	Pharmacokinetic and Pharmacodynamic Investigations of ION-353382, a Model Antisense Oligonucleotide: Using Alpha-2-Macroglobulin and Murinoglobulin Double-Knockout Mice. Nucleic Acid Therapeutics, 2016, 26, 223-235.	3.6	34
81	Synthesis and Biological Activity of 5â€Fluorotubercidin. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 161-170.	1.1	33
82	Mechanisms of palmitic acid-conjugated antisense oligonucleotide distribution in mice. Nucleic Acids Research, 2020, 48, 4382-4395.	14.5	33
83	β-Amino acid facilitates macrocyclic ring closure in a combinatorial library. Tetrahedron Letters, 1999, 40, 7757-7760.	1.4	32
84	New Inhibitors of Bacterial Protein Synthesis from a Combinatorial Library of Macrocycles. Journal of Medicinal Chemistry, 2002, 45, 3430-3439.	6.4	32
85	Structureâ^'Activity Relationship Study on a Simple Cationic Peptide Motif for Cellular Delivery of Antisense Peptide Nucleic Acid. Journal of Medicinal Chemistry, 2005, 48, 6741-6749.	6.4	32
86	Configuration of the 5′-Methyl Group Modulates the Biophysical and Biological Properties of Locked Nucleic Acid (LNA) Oligonucleotides. Journal of Medicinal Chemistry, 2010, 53, 8309-8318.	6.4	32
87	Structureâ€Based Design of a Highly Constrained Nucleic Acid Analogue: Improved Duplex Stabilization by Restricting Sugar Pucker and Torsion Angle <i>γ</i> . Angewandte Chemie - International Edition, 2012, 51, 11242-11245.	13.8	31
88	Allele-Selective Inhibition of Mutant Atrophin-1 Expression by Duplex and Single-Stranded RNAs. Biochemistry, 2014, 53, 4510-4518.	2.5	31
89	A Solid-Phase Synthesis of N,Nâ€~-Disubstituted Ureas and Perhydroimidazo[1,5-a]pyrazines via the Curtius Rearrangement. Organic Letters, 2000, 2, 3309-3311.	4.6	30
90	Peptide Nucleic Acids Conjugated to Short Basic Peptides Show Improved Pharmacokinetics and Antisense Activity in Adipose Tissue. Journal of Medicinal Chemistry, 2010, 53, 3919-3926.	6.4	30

#	Article	IF	CITATIONS
91	Reexamination of Neomycin B Degradation:  Efficient Preparation of Its CD and D Rings as Protected Glycosyl Donors. Organic Letters, 2002, 4, 3455-3458.	4.6	29
92	Biaryl guanidine inhibitors of in vitro HCV-IRES activity. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5139-5143.	2.2	29
93	Efficient synthesis of neomycin B related aminoglycosides. Tetrahedron Letters, 2000, 41, 4049-4052.	1.4	28
94	Efficient solution phase synthesis of 2-(N-acyl)-aminobenzimidazoles. Tetrahedron Letters, 2002, 43, 7303-7306.	1.4	27
95	Probing the functional requirements of the l-haba side-chain of amikacin—synthesis, 16S A-site rRNA binding, and antibacterial activity. Tetrahedron, 2003, 59, 995-1007.	1.9	27
96	Targeted Delivery of Antisense Oligonucleotides Using Neurotensin Peptides. Journal of Medicinal Chemistry, 2020, 63, 8471-8484.	6.4	27
97	Antibacterial activity of quinolone–Macrocycle conjugates. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1635-1638.	2.2	26
98	Evaluation of Basic Amphipathic Peptides for Cellular Delivery of Antisense Peptide Nucleic Acids. Journal of Medicinal Chemistry, 2006, 49, 2534-2542.	6.4	26
99	RNA interference by 2′,5′-linked nucleic acid duplexes in mammalian cells. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3238-3240.	2.2	26
100	Antisense oligonucleotides selectively suppress target RNA in nociceptive neurons of the pain system and can ameliorate mechanical pain. Pain, 2018, 159, 139-149.	4.2	26
101	Site-specific incorporation of 5′-methyl DNA enhances the therapeutic profile of gapmer ASOs. Nucleic Acids Research, 2021, 49, 1828-1839.	14.5	26
102	Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides. Molecular Therapy - Nucleic Acids, 2017, 7, 20-30.	5.1	24
103	A modular analysis of microglia gene expression, insights into the aged phenotype. BMC Genomics, 2019, 20, 164.	2.8	24
104	Disaccharide Mimetics of the Aminoglycoside Antibiotic Neamine. ChemBioChem, 2004, 5, 1228-1236.	2.6	23
105	Synthesis and Duplexâ€5tabilizing Properties of Fluorinated <i>N</i> â€Methanocarbathymidine Analogues Locked in the C3′â€ <i>endo</i> Conformation. Angewandte Chemie - International Edition, 2014, 53, 9893-9897.	13.8	23
106	Co-Administration of an Excipient Oligonucleotide Helps Delineate Pathways of Productive and Nonproductive Uptake of Phosphorothioate Antisense Oligonucleotides in the Liver. Nucleic Acid Therapeutics, 2017, 27, 209-220.	3.6	23
107	Synthesis, Antiproliferative and Antiviral Activity of Imidazo[4,5-d]isothiazole Nucleosides as 5:5 Fused Analogs of Nebularine and 6-Methylpurine Ribonucleoside. Journal of Medicinal Chemistry, 1997, 40, 771-784.	6.4	22
108	Comparison of Duplex Stabilizing Properties of 2′-Fluorinated Nucleic Acid Analogues with Furanose and Non-Furanose Sugar Rings. Journal of Organic Chemistry, 2014, 79, 8877-8881.	3.2	22

#	Article	IF	CITATIONS
109	Likelihood of Nonspecific Activity of Gapmer Antisense Oligonucleotides Is Associated with Relative Hybridization Free Energy. Nucleic Acid Therapeutics, 2020, 30, 215-228.	3.6	22
110	Exploring the Effect of Sequence Length and Composition on Allele-Selective Inhibition of Human Huntingtin Expression by Single-Stranded Silencing RNAs. Nucleic Acid Therapeutics, 2014, 24, 199-209.	3.6	21
111	Solid-phase synthesis of 5′-triantennary N-acetylgalactosamine conjugated antisense oligonucleotides using phosphoramidite chemistry. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4127-4130.	2.2	21
112	Concept, Discovery and Development of MMI Linkage: Story of a Novel Linkage: for Antisense Constructs. Nucleosides & Nucleotides, 1997, 16, 907-916.	0.5	20
113	Convective forces increase rostral delivery of intrathecal radiotracers and antisense oligonucleotides in the cynomolgus monkey nervous system. Journal of Translational Medicine, 2020, 18, 309.	4.4	20
114	Synthesis of 1-(2-aminopropyl)benzimidazoles, structurally related to the TIBO derivative R82150, with activity against human immunodeficiency virus. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 543-546.	2.2	19
115	A Constrained Tricyclic Nucleic Acid Analogue of α- <scp> </scp> -LNA: Investigating the Effects of Dual Conformational Restriction on Duplex Thermal Stability. Journal of Organic Chemistry, 2013, 78, 9064-9075.	3.2	19
116	Synthesis, Duplex Stabilization and Structural Properties of a Fluorinated Carbocyclic LNA Analogue. ChemBioChem, 2013, 14, 58-62.	2.6	19
117	Structural requirements for hybridization at the 5′-position are different in α-l-LNA as compared to β-d-LNA. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 296-299.	2.2	18
118	Synthesis and Biophysical Properties of Constrained d-Altritol Nucleic Acids (cANA). Organic Letters, 2013, 15, 4316-4319.	4.6	18
119	An Antisense Oligonucleotide Leads to Suppressed Transcription of Hdac2 and Long-Term Memory Enhancement. Molecular Therapy - Nucleic Acids, 2020, 19, 1399-1412.	5.1	18
120	Two-dimensional parallel array technology as a new approach to automated combinatorial solid-phase organic synthesis. , 1998, 61, 33-45.		17
121	An Efficient Synthesis of Gougerotin and Related Analogues Using Solid- and Solution-Phase Methodology. Organic Letters, 2005, 7, 3429-3432.	4.6	17
122	Synthesis and biophysical characterization of R-6′-Me-α-l-LNA modified oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1122-1125.	2.2	17
123	Synthesis of linked carbohydrates and evaluation of Their binding for 16S RNA by mass spectrometry. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3915-3918.	2.2	16
124	Evaluation of the effect of 2′-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3774-3779.	2.2	16
125	Improved synthesis and biological evaluation of an acyclic thiosangivamycin active against human cytomegalovirus. Antiviral Research, 1992, 19, 15-28.	4.1	15
126	The Synthesis of Substituted Imidazo[4,5-d]isothiazoles via the Ring Annulation of Isothiazole Diamines: An Investigation of the Chemical, Physical, and Biological Properties of Several Novel 5:5 Fused Analogs of the Purine Ring System. Journal of Organic Chemistry, 1995, 60, 6309-6317.	3.2	15

#	Article	IF	CITATIONS
127	An Improved Large-Scale Preparation of Benzimidazole-2-Sulfonic Acids and 2-Chlorobenzimidazoles. $\hat{a} \in_{i}$. Synthetic Communications, 1998, 28, 1703-1712.	2.1	15
128	Insights from Crystal Structures into the Opposite Effects on RNA Affinity Caused by the S- and R-6′-Methyl Backbone Modifications of 3′-Fluoro Hexitol Nucleic Acid. Biochemistry, 2012, 51, 7-9.	2.5	15
129	Solid-phase synthesis of a library of functionalized aminodiol scaffolds. , 1999, 61, 143-154.		14
130	Design, synthesis, and duplex-stabilizing properties of conformationally constrained tricyclic analogues of LNA. Organic and Biomolecular Chemistry, 2016, 14, 2034-2040.	2.8	14
131	Synthesis, Antiproliferative, and Antiviral Evaluation of Certain Acyclic 6-Substituted Pyrrolo[2,3- <i>D</i>]-pyrimidine Nucleoside Analogs Related to Sangivamycin and Toyocamycin. Nucleosides & Nucleotides, 1992, 11, 1507-1527.	0.5	13
132	Replacing the 2′-oxygen with an exocyclic methylene group reverses the stabilization effects of α-l-LNA. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 588-591.	2.2	13
133	Differential Effects on Allele Selective Silencing of Mutant Huntingtin by Two Stereoisomers of α,β-Constrained Nucleic Acid. ACS Chemical Biology, 2014, 9, 1975-1979.	3.4	13
134	Optimizing the antibacterial activity of a lead structure discovered by â€~SAR by MS' technology. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5257-5261.	2.2	12
135	The synthesis and 16S A-site rRNA recognition of carbohydrate-free aminoglycosides. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4919-4922.	2.2	12
136	Trisaccharide mimetics of the aminoglycoside antibiotic neomycin. Organic and Biomolecular Chemistry, 2006, 4, 1328.	2.8	12
137	Synthesis and biophysical evaluation of 3′-Me-α-l-LNA – Substitution in the minor groove of α-l-LNA duplexes. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4690-4694.	2.2	11
138	Synthesis of cis- and trans-α-l-[4.3.0]Bicyclo-DNA Monomers for Antisense Technology: Methods for the Diastereoselective Formation of Bicyclic Nucleosides. Journal of Organic Chemistry, 2013, 78, 9051-9063.	3.2	11
139	Evaluation of Phosphorus and Non-Phosphorus Neutral Oligonucleotide Backbones for Enhancing Therapeutic Index of Gapmer Antisense Oligonucleotides. Nucleic Acid Therapeutics, 2022, 32, 40-50.	3.6	10
140	A convenient synthesis of 5â€2-triantennary N-acetyl-galactosamine clusters based on nitromethanetrispropionic acid. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2194-2197.	2.2	9
141	Efficient Synthesis of Heterocyclic 2-Deoxysteptamine Derivatives as RNA Binding Ligands. Chemistry Letters, 2003, 32, 908-909.	1.3	8
142	Scalable synthesis of substituted 2,7-dimethyl-9-phenylxanthen-9-ol (DMPx-OH): useful for the preparation of crystalline 5′-O-DMPx-protected nucleosides. Tetrahedron Letters, 2012, 53, 4669-4672.	1.4	8
143	The Medicinal Chemistry of RNase H-activating Antisense Oligonucleotides. RSC Drug Discovery Series, 2019, , 32-61.	0.3	8
144	Synthesis of 2′â€ 6 ubstituted MMI Linked Nucleosidic Dimers: An Optimization Study in Search of High Affinity Oligonucleotides for Use in Antisense Constructs. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 411-438.	1.1	7

#	Article	IF	CITATIONS
145	Probing the ribosomal RNA A-site with functionally diverse analogues of paromomycin—synthesis of ring I mimetics. Tetrahedron, 2007, 63, 827-846.	1.9	7
146	Synthesis and Evaluation Of 2″-Modified MMI Linked Dimers in Antisense Constructs. Nucleosides & Nucleotides, 1997, 16, 959-962.	0.5	6
147	An Efficient Multigram Synthesis of Monomers for the Preparation of Novel Oligonucleotides Containing Isosteric Non-Phosphorous Backbones. Nucleosides & Nucleotides, 1997, 16, 1629-1632.	0.5	6
148	Solid-Phase Synthesis of a Heterocyclic Ethylenediamine-Derivatized Library. ACS Combinatorial Science, 2000, 2, 441-444.	3.3	6
149	Automated solid-phase synthesis of linear nitrogen-linked compounds. , 2000, 71, 19-27.		5
150	RNA-targeted therapeutics: prospects and promise. Expert Opinion on Therapeutic Patents, 2002, 12, 1367-1374.	5.0	5
151	Activity of siRNAs with 2-Thio-2′- <i>O</i> -Methyluridine Modification in Mammalian Cells. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 902-910.	1.1	5
152	Backbone Hydrocarbon-Constrained Nucleic Acids Modulate Hybridization Kinetics for RNA. Journal of the American Chemical Society, 2022, 144, 1941-1950.	13.7	5
153	The synthesis of several imidazo[4,5â€ <i>d</i>]isothiazoles. Derivatives of a new ring system. Journal of Heterocyclic Chemistry, 1993, 30, 1379-1383.	2.6	4
154	The Synthesis of the Sixteen Possible 2′- <i>O</i> -Methyl MMI Dimer Phosphoramidites: Building Blocks for the Synthesis of Novel Antisense Oligonucleotides. Nucleosides & Nucleotides, 1997, 16, 971-972.	0.5	4
155	Title is missing!. Angewandte Chemie, 2003, 115, 3531-3534.	2.0	4
156	Synthesis and Antisense Properties of 2′â€ <i>O</i> â€{2 <i>S</i> â€Methoxypropyl)â€RNAâ€Modified Gapmer Antisense Oligonucleotides. ChemMedChem, 2014, 9, 2040-2044.	3.2	3
157	Antibacterial Activity of Quinolone—Macrocycle Conjugates ChemInform, 2003, 34, no.	0.0	0
158	2-Piperidin-4-yl-benzimidazoles with Broad Spectrum Antibacterial Activities ChemInform, 2003, 34, no.	0.0	0
159	Synthesis and Biological Evaluations of Novel Benzimidazoles as Potential Antibacterial Agents ChemInform, 2004, 35, no.	0.0	0
160	S-Acyl-2-Thioethyl: A Convenient Base-Labile Protecting Group for the Synthesis of siRNAs Containing 5′-Vinylphosphonate. Molecules, 2019, 24, 225.	3.8	0