
Paola Montone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6844022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Database of Italian present-day stress indicators, IPSI 1.4. Scientific Data, 2020, 7, 298.	5.3	26
2	Constraints on the Structure of the Shallow Crust in Central Italy from Geophysical Log Data. Scientific Reports, 2020, 10, 3834.	3.3	14
3	Surface ruptures following the 26 December 2018, Mw 4.9, Mt. Etna earthquake, Sicily (Italy). Journal of Maps, 2019, 15, 831-837.	2.0	26
4	A quantitative approach to the loading rate of seismogenic sources in Italy. Geophysical Journal International, 2018, 213, 2096-2111.	2.4	9
5	Earthquake focal mechanism forecasting in Italy for PSHA purposes. Geophysical Journal International, 2018, 212, 491-508.	2.4	12
6	Surface ruptures following the 30 October 2016 <i>M</i> _w 6.5 Norcia earthquake, central Italy. Journal of Maps, 2018, 14, 151-160.	2.0	121
7	The new release of the Italian contemporary stress map. Geophysical Journal International, 2016, 205, 1525-1531.	2.4	74
8	Antarctic ice sheet sensitivity to atmospheric CO ₂ variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3453-3458.	7.1	133
9	Contemporary stress field in the area of the 2016 Amatrice seismic sequence (central Italy). Annals of Geophysics, 2016, 59, .	1.0	5
10	P-wave Velocity, Density, and Vertical Stress Magnitude Along the Crustal Po Plain (Northern Italy) from Sonic Log Drilling Data. Pure and Applied Geophysics, 2015, 172, 1547-1561.	1.9	22
11	Liquefaction phenomena associated with the Emilia earthquake sequence of May–June 2012 (Northern) Tj ETQ	2q1,10.78	4314 rgBT 0
12	The Italian present-day stress map. Geophysical Journal International, 2012, 189, 705-716.	2.4	114
13	Technologies and new approaches used by the INGV EMERGEO Working Group for real-time data sourcing and processing during the Emilia Romagna (northern Italy) 2012 earthquake sequence. Annals of Geophysics, 2012, 55, .	1.0	14
14	A study to constrain the geometry of an active fault in southern Italy through borehole breakouts and downhole logs. Journal of Geodynamics, 2011, 52, 279-289.	1.6	21
15	Evidence for surface rupture associated with the Mw 6.3 L'Aquila earthquake sequence of April 2009 (central Italy). Terra Nova, 2010, 22, 43-51.	2.1	140
16	Present-day stress in the surroundings of 2009 L'Aquila seismic sequence (Italy). Geophysical Journal International, 2010, 182, 1096-1102.	2.4	21
17	Present-day stress-field modelling of southern Italy constrained by stress and GPS data. Tectonophysics, 2010, 482, 193-204.	2.2	31
18	The Vallo di Diano Fault System: New Evidence for an Active Range-Bounding Fault in Southern Italy Using Shallow, High-Resolution Seismic Profiling. Bulletin of the Seismological Society of America, 2010, 100, 882-890.	2.3	14

PAOLA MONTONE

#	Article	IF	CITATIONS
19	Physical properties of tuffs from a scientific borehole at Alban hills volcanic district (central Italy). Tectonophysics, 2009, 471, 161-169.	2.2	19
20	On the occurrence of large earthquakes: New insights from a model based on interacting faults embedded in a realistic tectonic setting. Journal of Geophysical Research, 2009, 114, .	3.3	24
21	The Vallo di Diano and Auletta extensional basins in the southern Apennines (Italy): a simple model for a complex setting. Terra Nova, 2008, 20, 475-482.	2.1	35
22	Looking into a volcanic area: An overview on the 350Âm scientific drilling at Colli Albani (Rome, Italy). Journal of Volcanology and Geothermal Research, 2008, 176, 225-240.	2.1	25
23	Surface evidence of active tectonics along the Pergola-Melandro fault: A critical issue for the seismogenic potential of the southern Apennines, Italy. Journal of Geodynamics, 2007, 44, 19-32.	1.6	17
24	Evidence of active tectonics on a Roman aqueduct system (II–III century A.D.) near Rome, Italy. Journal of Structural Geology, 2004, 26, 679-690.	2.3	18
25	An improved stress map for Italy and surrounding regions (central Mediterranean). Journal of Geophysical Research, 2004, 109, .	3.3	212
26	Surface Rupture of the 2002 Denali Fault, Alaska, Earthquake and Comparison with Other Strike-Slip Ruptures. Earthquake Spectra, 2004, 20, 565-578.	3.1	42
27	Along-depth stress rotations and active faults: An example in a 5-km deep well of southern Italy. Tectonics, 2002, 21, 3-1-3-9.	2.8	16
28	Title is missing!. Journal of Seismology, 2000, 4, 333-343.	1.3	35
29	Active stress along the ne external margin of the Apennines: the Ferrara arc, northern Italy. Journal of Geodynamics, 1999, 28, 251-265.	1.6	53
30	Magnetic anisotropy of Plio–Pleistocene sediments from the Adriatic margin of the northern Apennines (Italy): implications for the time–space evolution of the stress field. Tectonophysics, 1999, 311, 139-153.	2.2	41
31	Recent tectonic evolution and present stress in the Northern Apennines (Italy). Tectonics, 1999, 18, 108-118.	2.8	86
32	The 1997 Umbria-Marche (Italy) earthquake sequence: Relationship between ground deformation and seismogenic structure. Geophysical Research Letters, 1999, 26, 895-898.	4.0	52
33	Active stress map of Italy. Journal of Geophysical Research, 1999, 104, 25595-25610.	3.3	150
34	Present-day stress field and active tectonics in southern peninsular Italy. Geophysical Journal International, 1997, 130, 519-534.	2.4	98
35	Evidence of active extension in Quaternary volcanoes of central Italy from breakout analysis and seismicity. Geophysical Research Letters, 1995, 22, 1909-1912.	4.0	36
36	State of stress in southern Italy from borehole breakout and focal mechanism data. Geophysical Research Letters, 1995, 22, 3119-3122.	4.0	37