Gang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6844011/publications.pdf Version: 2024-02-01

CANC WANC

#	Article	IF	CITATIONS
1	Functional Electrolytes: Game Changers for Smart Electrochemical Energy Storage Devices. Small Science, 2022, 2, 2100080.	5.8	16
2	An Efficient Rechargeable Aluminium–Amine Battery Working Under Quaternization Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
3	An Efficient Rechargeable Aluminium–Amine Battery Working Under Quaternization Chemistry. Angewandte Chemie, 2022, 134, .	1.6	7
4	Heterogeneous interface containing selenium vacancies space-confined in double carbon to induce superior electronic/ionic transport dynamics for sodium/potassium-ion half/full batteries. Energy Storage Materials, 2022, 46, 394-405.	9.5	49
5	In-situ construction of vacancies and schottky junctions in nickel-iron selenide within N-graphene porous matrix for enhanced sodium/potassium storage. Journal of Alloys and Compounds, 2022, , 165091.	2.8	4
6	An Anodeâ€Free Zn–Graphite Battery. Advanced Materials, 2022, 34, e2201957.	11.1	31
7	Electronic Doping of Metalâ€Organic Frameworks for Highâ€Performance Flexible Microâ€Supercapacitors. Small Structures, 2021, 2, 2000095.	6.9	25
8	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	18.7	255
9	Facile assembly of layer-interlocked graphene heterostructures as flexible electrodes for Li-ion batteries. Faraday Discussions, 2021, 227, 321-331.	1.6	1
10	Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal–Organic Frameworks with Large Pseudocapacitance and Wide Potential Window. Journal of the American Chemical Society, 2021, 143, 10168-10176.	6.6	75
11	Ionometallurgical Stepâ€Electrodeposition of Zinc and Lead and its Application in a Cyclingâ€Stable Highâ€Voltage Zincâ€Graphite Battery. Small, 2021, 17, e2102058.	5.2	10
12	A combinatorial study of electrochemical anion intercalation into graphite. Materials Research Express, 2021, 8, 085502.	0.8	5
13	A Highâ€Voltage, Dendriteâ€Free, and Durable Zn–Graphite Battery. Advanced Materials, 2020, 32, e1905681.	11.1	96
14	Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy and Environmental Science, 2020, 13, 2849-2855.	15.6	101
15	One-pot resource-efficient synthesis of SnSb powders for composite anodes in sodium-ion batteries. RSC Advances, 2020, 10, 22250-22256.	1.7	8
16	Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nature Communications, 2020, 11, 1348.	5.8	100
17	A Stimulusâ€Responsive Zinc–Iodine Battery with Smart Overcharge Selfâ€Protection Function. Advanced Materials, 2020, 32, e2000287.	11.1	97
18	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	9.5	113

GANG WANG

#	Article	IF	CITATIONS
19	Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chemical Science, 2020, 11, 7665-7671.	3.7	82
20	A General and Programmable Synthesis of Graphene-Based Composite Aerogels by a Melamine-Sponge-Templated Hydrothermal Process. CCS Chemistry, 2020, 2, 1-12.	4.6	17
21	A Nitrogenâ€Rich 2D sp ² â€Carbonâ€Linked Conjugated Polymer Framework as a Highâ€Performanc Cathode for Lithiumâ€lon Batteries. Angewandte Chemie, 2019, 131, 859-863.	e 1.6	71
22	A Nonaqueous Naâ€lon Hybrid Microâ€Supercapacitor with Wide Potential Window and Ultrahigh Areal Energy Density. Batteries and Supercaps, 2019, 2, 918-923.	2.4	30
23	Stabilizing Optimal Crystalline Facet of Cobalt Catalysts for Fischer–Tropsch Synthesis. ACS Applied Materials & Interfaces, 2019, 11, 33886-33893.	4.0	28
24	High efficient oxygen reduction performance of Fe/Fe3C nanoparticles in situ encapsulated in nitrogen-doped carbon via a novel microwave-assisted carbon bath method. Nano Materials Science, 2019, 1, 131-136.	3.9	9
25	A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Advanced Materials, 2019, 31, e1901478.	11.1	192
26	Beyond Activated Carbon: Graphite athodeâ€Derived Liâ€Ion Pseudocapacitors with High Energy and High Power Densities. Advanced Materials, 2019, 31, e1807712.	11.1	67
27	Znâ€lon Hybrid Microâ€Supercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. Advanced Materials, 2019, 31, e1806005.	11.1	266
28	A Nitrogenâ€Rich 2D sp ² arbonâ€Linked Conjugated Polymer Framework as a Highâ€Performanc Cathode for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 849-853.	e 7.2	275
29	Selfâ€Activating, Capacitive Anion Intercalation Enables Highâ€Power Graphite Cathodes. Advanced Materials, 2018, 30, e1800533.	11.1	121
30	A Dualâ€Stimuliâ€Responsive Sodiumâ€Bromine Battery with Ultrahigh Energy Density. Advanced Materials, 2018, 30, e1800028.	11.1	56
31	Vertically Aligned MoS ₂ Nanosheets Patterned on Electrochemically Exfoliated Graphene for Highâ€Performance Lithium and Sodium Storage. Advanced Energy Materials, 2018, 8, 1702254.	10.2	274
32	Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 24317-24323.	5.2	174
33	Crystal-Plane-Dependent Fischer–Tropsch Performance of Cobalt Catalysts. ACS Catalysis, 2018, 8, 9447-9455.	5.5	61
34	Single-crystalline α-Fe2O3 nanohexahedron as outstanding anode material for lithium-ion batteries. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
35	Polarityâ€Switchable Symmetric Graphite Batteries with High Energy and High Power Densities. Advanced Materials, 2018, 30, e1802949	11.1	51
36	Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy, 2017, 40, 27-33.	8.2	139

GANG WANG

#	Article	IF	CITATIONS
37	Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution. Journal of Materials Chemistry A, 2017, 5, 25314-25318.	5.2	136
38	Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy, 2017, 39, 253-261.	8.2	126
39	Constructing Hierarchically Hollow Core–Shell MnO ₂ /C Hybrid Spheres for Highâ€Performance Lithium Storage. Small, 2016, 12, 3914-3919.	5.2	48
40	Controlled Synthesis of Nâ€Doped Carbon Nanospheres with Tailored Mesopores through Selfâ€Assembly of Colloidal Silica. Angewandte Chemie - International Edition, 2015, 54, 15191-15196.	7.2	171
41	Efficient Coupling of Nanoparticles to Electrochemically Exfoliated Graphene. Journal of the American Chemical Society, 2015, 137, 5576-5581.	6.6	75
42	Self-assembled graphene monoliths: properties, structures and their pH-dependent self-assembly behavior. New Carbon Materials, 2015, 30, 30-40.	2.9	17
43	Novel preparation of nitrogen-doped graphene in various forms with aqueous ammonia under mild conditions. RSC Advances, 2012, 2, 11249.	1.7	54