
Lonnie D Shea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials, 2019, 4, 398-414.	23.3	658
2	DNA delivery from polymer matrices for tissue engineering. Nature Biotechnology, 1999, 17, 551-554.	9.4	651
3	Stem/Progenitor Cell–Mediated <i>De Novo</i> Regeneration of Dental Pulp with Newly Deposited Continuous Layer of Dentin in an <i>In Vivo</i> Model. Tissue Engineering - Part A, 2010, 16, 605-615.	1.6	535
4	Tissue-Engineered Follicles Produce Live, Fertile Offspring. Tissue Engineering, 2006, 12, 2739-2746.	4.9	354
5	Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nature Biotechnology, 2012, 30, 1217-1224.	9.4	351
6	Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials, 2005, 26, 359-371.	5.7	326
7	Advances in islet encapsulation technologies. Nature Reviews Drug Discovery, 2017, 16, 338-350.	21.5	315
8	Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 2000, 21, 1921-1927.	5.7	308
9	Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials, 2007, 28, 4439-4448.	5.7	292
10	In vitro grown human ovarian follicles from cancer patients support oocyte growth. Human Reproduction, 2009, 24, 2531-2540.	0.4	280
11	Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols, 2019, 14, 518-540.	5.5	274
12	A Biodegradable Nanoparticle Platform for the Induction of Antigen-Specific Immune Tolerance for Treatment of Autoimmune Disease. ACS Nano, 2014, 8, 2148-2160.	7.3	256
13	Matrices and scaffolds for DNA delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59, 292-307.	6.6	241
14	Identification of a Stage-Specific Permissive In Vitro Culture Environment for Follicle Growth and Oocyte Development1. Biology of Reproduction, 2006, 75, 916-923.	1.2	234
15	The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials, 2006, 27, 714-723.	5.7	219
16	Tissue engineering tools for modulation of the immune response. BioTechniques, 2011, 51, 239-254.	0.8	215
17	Engineered Bone Development from a Pre-Osteoblast Cell Line on Three-Dimensional Scaffolds. Tissue Engineering, 2000, 6, 605-617.	4.9	214
18	Controlled release systems for DNA delivery. Molecular Therapy, 2004, 10, 19-26.	3.7	214

#	Article	IF	CITATIONS
19	Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development. Biomaterials, 2009, 30, 5476-5485.	5.7	212
20	Design of modular non-viral gene therapy vectors. Biomaterials, 2006, 27, 947-954.	5.7	193
21	In vitro follicle growth supports human oocyte meiotic maturation. Scientific Reports, 2015, 5, 17323.	1.6	190
22	Harnessing nanoparticles for immune modulation. Trends in Immunology, 2015, 36, 419-427.	2.9	190
23	Novel Approach for the Three-Dimensional Culture of Granulosa Cell–Oocyte Complexes. Tissue Engineering, 2003, 9, 1013-1021.	4.9	183
24	Postnatal regulation of germ cells by activin: The establishment of the initial follicle pool. Developmental Biology, 2006, 298, 132-148.	0.9	183
25	Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell, 2012, 11, 1121-1124.	3.0	161
26	Regulation of Mouse Follicle Development by Follicle-Stimulating Hormone in a Three-Dimensional In Vitro Culture System Is Dependent on Follicle Stage and Dose1. Biology of Reproduction, 2005, 73, 942-950.	1.2	158
27	The Role of the Extracellular Matrix in Ovarian Follicle Development. Reproductive Sciences, 2007, 14, 6-10.	1.1	158
28	Plasmid Delivery in Vivo from Porous Tissue-Engineering Scaffolds: Transgene Expression and Cellular Transfection. Molecular Therapy, 2005, 12, 475-483.	3.7	156
29	DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials, 2005, 26, 1575-1584.	5.7	151
30	Surface-Tethered DNA Complexes for Enhanced Gene Delivery. Bioconjugate Chemistry, 2002, 13, 621-629.	1.8	146
31	Controllable delivery of non-viral DNA from porous scaffolds. Journal of Controlled Release, 2003, 86, 157-168.	4.8	140
32	A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertility and Sterility, 2010, 93, 2633-2639.	0.5	140
33	Bioengineering the Ovarian Follicle Microenvironment. Annual Review of Biomedical Engineering, 2014, 16, 29-52.	5.7	138
34	Extracellular Matrix Protein-Coated Scaffolds Promote the Reversal of Diabetes After Extrahepatic Islet Transplantation. Transplantation, 2008, 85, 1456-1464.	0.5	133
35	In vivo capture and label-free detection of early metastatic cells. Nature Communications, 2015, 6, 8094.	5.8	133
36	A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. Journal of Assisted Reproduction and Genetics, 2011, 28, 3-6.	1.2	132

#	Article	IF	CITATIONS
37	Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials, 2011, 32, 2524-2531.	5.7	132
38	Gene delivery through cell culture substrate adsorbed DNA complexes. Biotechnology and Bioengineering, 2005, 90, 290-302.	1.7	131
39	Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochemistry and Cell Biology, 2006, 126, 583-592.	0.8	130
40	Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science Advances, 2017, 3, e1700184.	4.7	130
41	Neurotrophin releasing single and multiple lumen nerve conduits. Journal of Controlled Release, 2005, 104, 433-446.	4.8	129
42	Polymer Scaffolds as Synthetic Microenvironments for Extrahepatic Islet Transplantation. Transplantation, 2006, 82, 452-459.	0.5	126
43	Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nature Materials, 2018, 17, 732-739.	13.3	124
44	Non-viral vector delivery from PEG-hyaluronic acid hydrogels. Journal of Controlled Release, 2007, 120, 233-241.	4.8	123
45	Evidence for Chromosome 2p16.3 Polycystic Ovary Syndrome Susceptibility Locus in Affected Women of European Ancestry. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E185-E190.	1.8	121
46	Fate of the initial follicle pool: Empirical and mathematical evidence supporting its sufficiency for adult fertility. Developmental Biology, 2006, 298, 149-154.	0.9	117
47	Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnology and Bioengineering, 2009, 103, 378-386.	1.7	117
48	Engineering the Follicle Microenvironment. Seminars in Reproductive Medicine, 2007, 25, 287-299.	0.5	112
49	Substrate-mediated DNA delivery: role of the cationic polymer structure and extent of modification. Journal of Controlled Release, 2003, 93, 69-84.	4.8	111
50	Gene delivery from polymer scaffolds for tissue engineering. Expert Review of Medical Devices, 2004, 1, 127-138.	1.4	110
51	Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. Journal of Assisted Reproduction and Genetics, 2014, 31, 1013-1028.	1.2	110
52	Extracellular Matrix Functions in Follicle Maturation. Seminars in Reproductive Medicine, 2006, 24, 262-269.	0.5	109
53	Engineering Biomaterial Systems to Enhance Viral Vector Gene Delivery. Molecular Therapy, 2011, 19, 1407-1415.	3.7	107
54	Fibrin Encapsulation and Vascular Endothelial Growth Factor Delivery Promotes Ovarian Graft Survival in Mice. Tissue Engineering - Part A, 2011, 17, 3095-3104.	1.6	105

#	Article	IF	CITATIONS
55	In Vitro Oocyte Maturation and Preantral Follicle Culture from the Luteal-Phase Baboon Ovary Produce Mature Oocytes. Biology of Reproduction, 2011, 84, 689-697.	1.2	103
56	Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials, 2012, 33, 1618-1626.	5.7	103
57	Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials, 2016, 80, 11-19.	5.7	103
58	Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone. Journal of Clinical Investigation, 2017, 128, 248-266.	3.9	103
59	Engineering the pre-metastatic niche. Nature Biomedical Engineering, 2017, 1, .	11.6	100
60	Engineering the ovarian cycle using in vitro follicle culture. Human Reproduction, 2015, 30, 1386-1395.	0.4	99
61	The Mouse Follicle Microenvironment Regulates Antrum Formation and Steroid Production: Alterations in Gene Expression Profiles1. Biology of Reproduction, 2009, 80, 432-439.	1.2	98
62	In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Advanced Drug Delivery Reviews, 2017, 114, 240-255.	6.6	95
63	Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials, 2009, 30, 2361-2368.	5.7	91
64	An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 191-200.	1.7	89
65	Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. Journal of Autoimmunity, 2018, 89, 112-124.	3.0	87
66	Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. Gastroenterology, 2020, 158, 1667-1681.e12.	0.6	87
67	Enhanced Survival with Implantable Scaffolds That Capture Metastatic Breast Cancer Cells <i>In Vivo</i> . Cancer Research, 2016, 76, 5209-5218.	0.4	86
68	Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. Journal of Cell Biology, 2016, 212, 425-438.	2.3	83
69	Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14947-14954.	3.3	83
70	Aligned hydrogel tubes guide regeneration following spinal cord injury. Acta Biomaterialia, 2019, 86, 312-322.	4.1	83
71	Peptide-Conjugated Nanoparticles Reduce Positive Co-stimulatory Expression and T Cell Activity to Induce Tolerance. Molecular Therapy, 2017, 25, 1676-1685.	3.7	79
72	Controlled Delivery of Single or Multiple Antigens in Tolerogenic Nanoparticles Using Peptide-Polymer Bioconjugates. Molecular Therapy, 2017, 25, 1655-1664.	3.7	79

#	Article	IF	CITATIONS
73	Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5059-5064.	3.3	78
74	Nanoparticle delivery of donor antigens for transplant tolerance in allogeneic islet transplantation. Biomaterials, 2014, 35, 8887-8894.	5.7	77
75	Fibrin hydrogels for non-viral vector delivery in vitro. Journal of Controlled Release, 2009, 136, 148-154.	4.8	75
76	Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury. Biomaterials, 2013, 34, 2213-2220.	5.7	73
77	Substrate-mediated delivery from self-assembled monolayers: Effect of surface ionization, hydrophilicity, and patterning. Acta Biomaterialia, 2005, 1, 511-522.	4.1	71
78	Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. Journal of Controlled Release, 2012, 157, 80-85.	4.8	68
79	It's All in the Delivery: Designing Hydrogels for Cell and Non-viral Gene Therapies. Molecular Therapy, 2018, 26, 2087-2106.	3.7	68
80	Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. Journal of Controlled Release, 2019, 300, 185-196.	4.8	68
81	Inductive tissue engineering with protein and DNA-releasing scaffolds. Molecular BioSystems, 2006, 2, 36-48.	2.9	67
82	Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials, 2011, 32, 9677-9684.	5.7	67
83	Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 282-291.	1.7	67
84	Patterned PLG substrates for localized DNA delivery and directed neurite extension. Biomaterials, 2007, 28, 2603-2611.	5.7	66
85	Preserving female fertility following cancer treatment: Current options and future possibilities. Pediatric Blood and Cancer, 2009, 53, 289-295.	0.8	66
86	PLG Scaffold Delivered Antigen-Specific Regulatory T Cells Induce Systemic Tolerance in Autoimmune Diabetes. Tissue Engineering - Part A, 2013, 19, 1465-1475.	1.6	66
87	Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression. Biomaterials, 2014, 35, 2024-2031.	5.7	66
88	Immune Tolerance for Autoimmune Disease and Cell Transplantation. Annual Review of Biomedical Engineering, 2016, 18, 181-205.	5.7	66
89	Conjugation of Transforming Growth Factor Beta to Antigen-Loaded Poly(lactide- <i>co</i> -glycolide) Nanoparticles Enhances Efficiency of Antigen-Specific Tolerance. Bioconjugate Chemistry, 2018, 29, 813-823.	1.8	66
90	Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche. Acta Biomaterialia, 2016, 33, 13-24.	4.1	65

#	Article	IF	CITATIONS
91	Neutrophils preferentially phagocytose elongated particles—An opportunity for selective targeting in acute inflammatory diseases. Science Advances, 2020, 6, eaba1474.	4.7	64
92	Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages. Life Science Alliance, 2021, 4, e202000935.	1.3	64
93	Nano-Encapsulation of Arsenic Trioxide Enhances Efficacy against Murine Lymphoma Model while Minimizing Its Impact on Ovarian Reserve In Vitro and In Vivo. PLoS ONE, 2013, 8, e58491.	1.1	63
94	Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury. Integrative Biology (United Kingdom), 2014, 6, 694-705.	0.6	63
95	Collagen IV-Modified Scaffolds Improve Islet Survival and Function and Reduce Time to Euglycemia. Tissue Engineering - Part A, 2013, 19, 2361-2372.	1.6	62
96	Size-specific follicle selection improves mouse oocyte reproductive outcomes. Reproduction, 2015, 150, 183-192.	1.1	61
97	Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function. Biomaterials, 2015, 65, 1-12.	5.7	61
98	Surface polyethylene glycol enhances substrate-mediated gene delivery by nonspecifically immobilized complexes. Acta Biomaterialia, 2008, 4, 26-39.	4.1	60
99	Sustained transgene expression via citric acid-based polyester elastomers. Biomaterials, 2009, 30, 2632-2641.	5.7	60
100	Future Directions in Oncofertility and Fertility Preservation: A Report from the 2011 Oncofertility Consortium Conference. Journal of Adolescent and Young Adult Oncology, 2013, 2, 25-30.	0.7	59
101	Plasmid Releasing Multiple Channel Bridges for Transgene Expression After Spinal Cord Injury. Molecular Therapy, 2009, 17, 318-326.	3.7	58
102	Murine granulosa cell morphology and function are regulated by a synthetic Arg–Gly–Asp matrix. Molecular and Cellular Endocrinology, 2003, 205, 1-10.	1.6	57
103	Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response. Tissue Engineering - Part A, 2009, 15, 3283-3295.	1.6	56
104	Embryonic Fibroblasts Enable the Culture of Primary Ovarian Follicles Within Alginate Hydrogels. Tissue Engineering - Part A, 2012, 18, 1229-1238.	1.6	56
105	Hydrogels for lentiviral gene delivery. Expert Opinion on Drug Delivery, 2013, 10, 499-509.	2.4	56
106	Poly(lactide-co-glycolide) microspheres for MRI-monitored transcatheter delivery of sorafenib to liver tumors. Journal of Controlled Release, 2014, 184, 10-17.	4.8	56
107	Local Immunomodulation with Anti-inflammatory Cytokine-Encoding Lentivirus Enhances Functional Recovery after Spinal Cord Injury. Molecular Therapy, 2018, 26, 1756-1770.	3.7	56
108	Intramuscular delivery of DNA releasing microspheres: Microsphere properties and transgene expression. Journal of Controlled Release, 2006, 112, 120-128.	4.8	53

#	Article	IF	CITATIONS
109	Lentivirus Immobilization to Nanoparticles for Enhanced and Localized Delivery From Hydrogels. Molecular Therapy, 2010, 18, 700-706.	3.7	53
110	Permanent protection of PLG scaffold transplanted allogeneic islet grafts in diabetic mice treated with ECDI-fixed donor splenocyte infusions. Biomaterials, 2011, 32, 4517-4524.	5.7	53
111	Motility-related actinin alpha-4 is associated with advanced and metastatic ovarian carcinoma. Laboratory Investigation, 2008, 88, 602-614.	1.7	52
112	Fibrin-Mediated Delivery of an Ovarian Follicle Pool in a Mouse Model of Infertility. Tissue Engineering - Part A, 2014, 20, 3021-3030.	1.6	52
113	Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnology and Bioengineering, 2014, 111, 1417-1429.	1.7	52
114	Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation. Biomaterials, 2019, 218, 119333.	5.7	51
115	Microenvironmental Regulation of Chemokine (C-X-C-Motif) Receptor 4 in Ovarian Carcinoma. Molecular Cancer Research, 2010, 8, 653-664.	1.5	50
116	The contribution of plasmid design and release to in vivo gene expression following delivery from cationic polymer modified scaffolds. Biomaterials, 2010, 31, 1140-1147.	5.7	49
117	Multi-modal magnetic resonance elastography for noninvasive assessment of ovarian tissue rigidity in vivo. Acta Biomaterialia, 2015, 13, 295-300.	4.1	49
118	Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. Journal of Controlled Release, 2018, 290, 88-101.	4.8	49
119	The impact of adhesion peptides within hydrogels on the phenotype and signaling of normal and cancerous mammary epithelial cells. Biomaterials, 2012, 33, 3548-3559.	5.7	48
120	Mechanistic model of C-protein signal transduction determinants of efficacy and effect of precoupled receptors. Biochemical Pharmacology, 1997, 53, 519-530.	2.0	47
121	Hydrogel macroporosity and the prolongation of transgene expression and the enhancement of angiogenesis. Biomaterials, 2012, 33, 7412-7421.	5.7	47
122	Polysaccharide-modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury. Journal of Controlled Release, 2013, 170, 421-429.	4.8	47
123	Regulation and guidance of cell behavior for tissue regeneration via the siRNA mechanism. Wound Repair and Regeneration, 2007, 15, 286-295.	1.5	46
124	Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices. Reproduction, Fertility and Development, 2014, 26, 915.	0.1	46
125	Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. Biomaterials, 2016, 76, 1-10.	5.7	46
126	Design of biodegradable nanoparticles to modulate phenotypes of antigen-presenting cells for antigen-specific treatment of autoimmune disease. Biomaterials, 2019, 222, 119432.	5.7	46

#	Article	IF	CITATIONS
127	Human lung organoids develop into adult airway-like structures directed by physico-chemical biomaterial properties. Biomaterials, 2020, 234, 119757.	5.7	46
128	Spatially Patterned Gene Delivery for Localized Neuron Survival and Neurite Extension. Molecular Therapy, 2007, 15, 705-712.	3.7	45
129	Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. Biotechnology and Bioengineering, 2018, 115, 2075-2086.	1.7	45
130	Poly(lactide-co-glycolide) microspheres for MRI-monitored delivery of sorafenib in a rabbit VX2 model. Biomaterials, 2015, 61, 299-306.	5.7	44
131	Noninvasive Index of Cryorecovery and Growth Potential for Human Follicles In Vitro1. Biology of Reproduction, 2010, 82, 1180-1189.	1.2	43
132	Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein. Journal of Biological Chemistry, 2013, 288, 141-151.	1.6	42
133	Wilms tumor gene protein 1 is associated with ovarian cancer metastasis and modulates cell invasion. Cancer, 2008, 112, 1632-1641.	2.0	41
134	Efficacy of immobilized polyplexes and lipoplexes for substrateâ€mediated gene delivery. Biotechnology and Bioengineering, 2009, 102, 1679-1691.	1.7	41
135	Heparin–chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors. Biomaterials, 2014, 35, 8687-8693.	5.7	41
136	Self-assembling peptide–lipoplexes for substrate-mediated gene delivery. Acta Biomaterialia, 2009, 5, 903-912.	4.1	40
137	Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury. Journal of Biomedical Materials Research - Part A, 2011, 98A, 372-382.	2.1	40
138	Porous Scaffolds Support Extrahepatic Human Islet Transplantation, Engraftment, and Function in Mice. Cell Transplantation, 2013, 22, 811-819.	1.2	40
139	Downregulation of connective tissue growth factor by threeâ€dimensional matrix enhances ovarian carcinoma cell invasion. International Journal of Cancer, 2009, 125, 816-825.	2.3	39
140	Nerve growth factor expression by PLG-mediated lipofection. Biomaterials, 2006, 27, 2477-2486.	5.7	38
141	Balancing cell migration with matrix degradation enhances gene delivery to cells cultured three-dimensionally within hydrogels. Journal of Controlled Release, 2010, 146, 128-135.	4.8	38
142	Modulating lung immune cells by pulmonary delivery of antigen-specific nanoparticles to treat autoimmune disease. Science Advances, 2020, 6, .	4.7	38
143	Layered PLG scaffolds for in vivo plasmid delivery. Biomaterials, 2009, 30, 394-401.	5.7	37
144	Patterned transgene expression in multiple-channel bridges after spinal cord injury. Acta Biomaterialia, 2010, 6, 2889-2897.	4.1	37

#	Article	IF	CITATIONS
145	Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs, 2016, 202, 52-66.	1.3	37
146	Gene Delivery by Immobilization to Cell-Adhesive Substrates. MRS Bulletin, 2005, 30, 659-662.	1.7	36
147	Phosphatidylserine immobilization of lentivirus for localized gene transfer. Biomaterials, 2010, 31, 4353-4359.	5.7	36
148	Reducing neuroinflammation by delivery of ILâ€10 encoding lentivirus from multipleâ€channel bridges. Bioengineering and Translational Medicine, 2016, 1, 136-148.	3.9	35
149	Controlled release strategies for modulating immune responses to promote tissue regeneration. Journal of Controlled Release, 2015, 219, 155-166.	4.8	34
150	Microporous scaffolds support assembly and differentiation of pancreatic progenitors into \hat{l}^2 -cell clusters. Acta Biomaterialia, 2019, 96, 111-122.	4.1	34
151	Synergistic effect of eribulin and CDK inhibition for the treatment of triple negative breast cancer. Oncotarget, 2017, 8, 83925-83939.	0.8	34
152	An injectable PEG hydrogel controlling neurotrophin-3 release by affinity peptides. Journal of Controlled Release, 2021, 330, 575-586.	4.8	32
153	Gene therapy vectors with enhanced transfection based on hydrogels modified with affinity peptides. Biomaterials, 2011, 32, 5092-5099.	5.7	30
154	Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells. Cell Cycle, 2014, 13, 3191-3201.	1.3	30
155	Localized immune tolerance from FasL-functionalized PLG scaffolds. Biomaterials, 2019, 192, 271-281.	5.7	30
156	Long-Term Characterization of Axon Regeneration and Matrix Changes Using Multiple Channel Bridges for Spinal Cord Regeneration. Tissue Engineering - Part A, 2014, 20, 1027-1037.	1.6	29
157	Dynamic, Large-Scale Profiling of Transcription Factor Activity from Live Cells in 3D Culture. PLoS ONE, 2010, 5, e14026.	1.1	29
158	Dynamic transcription factor activity networks in response to independently altered mechanical and adhesive microenvironmental cues. Integrative Biology (United Kingdom), 2016, 8, 844-860.	0.6	28
159	Metastatic Conditioning of Myeloid Cells at a Subcutaneous Synthetic Niche Reflects Disease Progression and Predicts Therapeutic Outcomes. Cancer Research, 2020, 80, 602-612.	0.4	28
160	Spatially patterned gene expression for guided neurite extension. Journal of Neuroscience Research, 2009, 87, 844-856.	1.3	27
161	Porous Silicon Nanoparticles Embedded in Poly(lacticâ€ <i>co</i> â€glycolic acid) Nanofiber Scaffolds Deliver Neurotrophic Payloads to Enhance Neuronal Growth. Advanced Functional Materials, 2020, 30, 2002560.	7.8	27
162	Polycistronic Delivery of IL-10 and NT-3 Promotes Oligodendrocyte Myelination and Functional Recovery in a Mouse Spinal Cord Injury Model. Tissue Engineering - Part A, 2020, 26, 672-682.	1.6	27

#	Article	IF	CITATIONS
163	Lentivirus delivery by adsorption to tissue engineering scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1252-1259.	2.1	26
164	Biomaterial Scaffolds Recruit an Aggressive Population of Metastatic Tumor Cells <i>In Vivo</i> . Cancer Research, 2019, 79, 2042-2053.	0.4	26
165	Bioluminescence imaging for assessment and normalization in transfected cell arrays. Biotechnology and Bioengineering, 2007, 98, 486-497.	1.7	25
166	Biomaterial Scaffolds as Preâ€metastatic Niche Mimics Systemically Alter the Primary Tumor and Tumor Microenvironment. Advanced Healthcare Materials, 2018, 7, e1700903.	3.9	25
167	Microporous Polymer Scaffolds for the Transplantation of Embryonic Stem Cell Derived Pancreatic Progenitors to a Clinically Translatable Site for the Treatment of Type I Diabetes. ACS Biomaterials Science and Engineering, 2018, 4, 1770-1778.	2.6	25
168	Evaluation of biomaterial scaffold delivery of IL-33 as a localized immunomodulatory agent to support cell transplantation in adipose tissue. Journal of Immunology and Regenerative Medicine, 2018, 1, 1-12.	0.2	25
169	Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clinical Immunology, 2015, 160, 14-23.	1.4	24
170	Neutrophil and natural killer cell imbalances prevent muscle stem cell–mediated regeneration following murine volumetric muscle loss. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111445119.	3.3	24
171	Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. Journal of Controlled Release, 2015, 204, 1-10.	4.8	23
172	Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. Biomaterials, 2021, 269, 120666.	5.7	23
173	Engineering Surfaces for Substrate-Mediated Gene Delivery Using Recombinant Proteins. Biomacromolecules, 2009, 10, 2779-2786.	2.6	22
174	Cellular arrays for largeâ€scale analysis of transcription factor activity. Biotechnology and Bioengineering, 2011, 108, 395-403.	1.7	22
175	Hydrogel design for supporting neurite outgrowth and promoting gene delivery to maximize neurite extension. Biotechnology and Bioengineering, 2012, 109, 830-839.	1.7	22
176	Dynamic transcription factor activity profiling in 2D and 3D cell cultures. Biotechnology and Bioengineering, 2013, 110, 563-572.	1.7	22
177	Dynamic Transcription Factor Networks in Epithelial-Mesenchymal Transition in Breast Cancer Models. PLoS ONE, 2013, 8, e57180.	1.1	22
178	Secretome identification of immune cell factors mediating metastatic cell homing. Scientific Reports, 2015, 5, 17566.	1.6	22
179	Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials, 2022, 283, 121457.	5.7	21
180	Synergy of Paracrine Signaling During Early-Stage Mouse Ovarian Follicle Development In Vitro. Cellular and Molecular Bioengineering, 2018, 11, 435-450.	1.0	20

#	Article	IF	CITATIONS
181	Markers of growth and development in primate primordial follicles are preserved after slow cryopreservation. Fertility and Sterility, 2010, 93, 2627-2632.	0.5	19
182	Supplemented αMEM/F12â€based medium enables the survival and growth of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnology and Bioengineering, 2013, 110, 3258-3268.	1.7	19
183	Microarray analysis identifies COMP as the most differentially regulated transcript throughout in vitro follicle growth. Molecular Reproduction and Development, 2013, 80, 132-144.	1.0	19
184	Moldâ€casted nonâ€degradable, islet macroâ€encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice. Biotechnology and Bioengineering, 2016, 113, 2485-2495.	1.7	19
185	Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes. Biotechnology and Bioengineering, 2018, 115, 2356-2364.	1.7	19
186	Ligands, Receptors, and Transcription Factors that Mediate Inter-Cellular and Intra-Cellular Communication during Ovarian Follicle Development. Reproductive Sciences, 2020, 27, 690-703.	1.1	19
187	Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes and Endocrinology,the, 2021, 9, 708-724.	5.5	19
188	Hydrogels to modulate lentivirus delivery in vivo from microporous tissue engineering scaffolds. Drug Delivery and Translational Research, 2011, 1, 91-101.	3.0	18
189	Quantification of particle-conjugated or particle-encapsulated peptides on interfering reagent backgrounds. BioTechniques, 2014, 57, 39-44.	0.8	18
190	Optimizing PLG nanoparticle-peptide delivery platforms for transplantation tolerance using an allogeneic skin transplant model. Biomaterials, 2019, 210, 70-82.	5.7	18
191	Engineered Niches to Analyze Mechanisms of Metastasis and Guide Precision Medicine. Cancer Research, 2020, 80, 3786-3794.	0.4	16
192	Peptide-mediated lipofection is governed by lipoplex physical properties and the density of surface-displayed amines. Journal of Pharmaceutical Sciences, 2008, 97, 4794-4806.	1.6	15
193	Nonâ€viral gene delivery transfection profiles influence neuronal architecture in an in vitro coâ€culture model. Biotechnology and Bioengineering, 2009, 103, 1023-1033.	1.7	15
194	Systems analysis of dynamic transcription factor activity identifies targets for treatment in Olaparib resistant cancer cells. Biotechnology and Bioengineering, 2017, 114, 2085-2095.	1.7	15
195	Spinal Progenitor-Laden Bridges Support Earlier Axon Regeneration Following Spinal Cord Injury. Tissue Engineering - Part A, 2018, 24, 1588-1602.	1.6	15
196	Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation. ACS Biomaterials Science and Engineering, 2020, 6, 5771-5784.	2.6	15
197	Adrenergic Blockade Promotes Maintenance of Dormancy in Prostate Cancer Through Upregulation of GAS6. Translational Oncology, 2020, 13, 100781.	1.7	15
198	Lentiviral Interleukin-10 Gene Therapy Preserves Fine Motor Circuitry and Function After a Cervical Spinal Cord Injury in Male and Female Mice. Neurotherapeutics, 2021, 18, 503-514.	2.1	15

#	Article	IF	CITATIONS
199	ILâ€10 lentivirusâ€laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury. Biotechnology and Bioengineering, 2021, 118, 2609-2625.	1.7	15
200	Compartmentalization of Receptors and Enzymes Affects Activation for a Collision Coupling Mechanism. Journal of Theoretical Biology, 1998, 191, 249-258.	0.8	14
201	Semi-automated counting of axon regeneration in poly(lactide co-glycolide) spinal cord bridges. Journal of Neuroscience Methods, 2016, 263, 15-22.	1.3	13
202	Dynamic genome-scale cell-specific metabolic models reveal novel inter-cellular and intra-cellular metabolic communications during ovarian follicle development. BMC Bioinformatics, 2019, 20, 307.	1.2	13
203	Combinatorial lentiviral gene delivery of proâ€oligodendrogenic factors forÂimprovingÂmyelination of regenerating axons after spinal cord injury. Biotechnology and Bioengineering, 2019, 116, 155-167.	1.7	13
204	Gene delivery to overcome astrocyte inhibition of axonal growth: An in vitro Model of the glial scar. Biotechnology and Bioengineering, 2013, 110, 947-957.	1.7	12
205	Cryotemplation for the rapid fabrication of porous, patternable photopolymerized hydrogels. Journal of Materials Chemistry B, 2014, 2, 4521-4530.	2.9	12
206	The structures that underlie normal reproductive function. Molecular and Cellular Endocrinology, 2007, 267, 1-5.	1.6	11
207	Sustained, localized transgene expression mediated from lentivirusâ€loaded biodegradable polyester elastomers. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1328-1335.	2.1	11
208	Localized lentivirus delivery via peptide interactions. Biotechnology and Bioengineering, 2016, 113, 2033-2040.	1.7	11
209	Dynamic microRNA activity identifies therapeutic targets in trastuzumabâ€resistant HER2 ⁺ breast cancer. Biotechnology and Bioengineering, 2018, 115, 2613-2623.	1.7	10
210	Microporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo. Biotechnology and Bioengineering, 2020, 117, 210-222.	1.7	10
211	Modular design of non-viral vectors with bioactive components. Trends in Biotechnology, 2004, 22, 429-431.	4.9	9
212	Dynamic transcription factor activity profiles reveal key regulatory interactions during megakaryocytic and erythroid differentiation. Biotechnology and Bioengineering, 2014, 111, 2082-2094.	1.7	9
213	Developing a Model for Integrating Professional Practice and Evidence-Based Teaching Practices into BME Curriculum. Annals of Biomedical Engineering, 2020, 48, 881-892.	1.3	9
214	Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis. Nature Communications, 2020, 11, 3871.	5.8	9
215	Masked Delivery of Allergen in Nanoparticles Safely Attenuates Anaphylactic Response in Murine Models of Peanut Allergy. Frontiers in Allergy, 2022, 3, 829605.	1.2	9
216	Counteracting Flow Electrophoresis: A Technique for Separating Biochemicals or Charged Macromolecules. Biotechnology Progress, 1994, 10, 246-252.	1.3	8

#	Article	IF	CITATIONS
217	High Frequency Spectral Ultrasound Imaging to Detect Metastasis in Implanted Biomaterial Scaffolds. Annals of Biomedical Engineering, 2020, 48, 477-489.	1.3	8
218	Integration of Islet/Beta-Cell Transplants with Host Tissue Using Biomaterial Platforms. Endocrinology, 2020, 161, .	1.4	8
219	Towards systems tissue engineering: Elucidating the dynamics, spatial coordination, and individual cells driving emergent behaviors. Biomaterials, 2020, 255, 120189.	5.7	8
220	Disease-induced immunomodulation at biomaterial scaffolds detects early pancreatic cancer in a spontaneous model. Biomaterials, 2021, 269, 120632.	5.7	8
221	Regulation of Wilms' tumor gene expression by nerve growth factor and follicle-stimulating hormone in the immature mouse ovary. Fertility and Sterility, 2009, 91, 1451-1454.	0.5	7
222	Phosphate regulates chondrogenesis in a biphasic and maturation-dependent manner. Differentiation, 2017, 95, 54-62.	1.0	7
223	Cyclin E overexpression confers resistance to trastuzumab through noncanonical phosphorylation of SMAD3 in HER2+ breast cancer. Cancer Biology and Therapy, 2020, 21, 994-1004.	1.5	7
224	Regulation of adipose tissue inflammation and systemic metabolism in murine obesity by polymer implants loaded with lentiviral vectors encoding human interleukinâ€4. Biotechnology and Bioengineering, 2020, 117, 3891-3901.	1.7	6
225	Feasibility study on mouse live imaging after spinal cord injury and poly(lactide-co-glycolide) bridge implantation. Journal of Biomedical Optics, 2018, 23, 1.	1.4	6
226	Embryonic stem cell secreted factors decrease invasiveness of triple-negative breast cancer cells through regulome modulation. Cancer Biology and Therapy, 2018, 19, 271-281.	1.5	5
227	PLG Bridge Implantation in Chronic SCI Promotes Axonal Elongation and Myelination. ACS Biomaterials Science and Engineering, 2019, 5, 6679-6690.	2.6	5
228	Implications of TGFÎ ² Signaling and CDK Inhibition for the Treatment of Breast Cancer. Cancers, 2021, 13, 5343.	1.7	5
229	Take a deep breath and digest the material: organoids and biomaterials of the respiratory and digestive systems. MRS Communications, 2017, 7, 502-514.	0.8	4
230	Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an <i>ex vivo</i> model of prenatal spina bifida repair. Journal of Tissue Engineering, 2020, 11, 204173142094383.	2.3	4
231	Design of Large-Scale Reporter Construct Arrays for Dynamic, Live Cell Systems Biology. ACS Synthetic Biology, 2018, 7, 2063-2073.	1.9	3
232	Precision health for breast cancer metastasis: biomaterial scaffolds as an engineered metastatic niche to define, study, and monitor metastatic progression. Oncoscience, 2019, 6, 380-382.	0.9	2
233	Delivery of Interleukinâ€4–Encoding Lentivirus Using Multipleâ€Channel Bridges Enhances Nerve Regeneration. Laryngoscope, 2020, 130, 2802-2810.	1.1	1
234	Nanotechnology and biomaterials for immune modulation and monitoring. , 2021, , 41-65.		1

#	Article	IF	CITATIONS
235	Immuno-Isolating Dual Poly(ethylene glycol) Capsule Prevents Cancer Cells from Spreading Following Mouse Ovarian Tissue Auto-Transplantation. Regenerative Medicine Frontiers, 2019, 2019, .	0.0	1
236	169. Patterned Substrate-Mediated DNA Delivery Using Soft Lithography for Neural Tissue Engineering. Molecular Therapy, 2006, 13, S65-S66.	3.7	0
237	Pre-Metastatic Niche: Biomaterial Scaffolds as Pre-metastatic Niche Mimics Systemically Alter the Primary Tumor and Tumor Microenvironment (Adv. Healthcare Mater. 10/2018). Advanced Healthcare Materials, 2018, 7, 1870040.	3.9	0
238	Back to the science of stem cell research - CHI's 2nd Annual Meeting. IDrugs: the Investigational Drugs Journal, 2006, 9, 699-701.	0.7	0