
Daan Noordermeer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancer loops appear stable during development and are associated with paused polymerase. Nature, 2014, 512, 96-100.	13.7	450
2	A Switch Between Topological Domains Underlies <i>HoxD</i> Genes Collinearity in Mouse Limbs. Science, 2013, 340, 1234167.	6.0	391
3	The Dynamic Architecture of <i>Hox</i> Gene Clusters. Science, 2011, 334, 222-225.	6.0	370
4	Secondary metabolic gene cluster silencing in Aspergillus nidulans. Molecular Microbiology, 2006, 61, 1636-1645.	1.2	200
5	Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature, 2021, 590, 660-665.	13.7	175
6	Clustering of mammalian <i>Hox</i> genes with other H3K27me3 targets within an active nuclear domain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4672-4677.	3.3	143
7	Conservation and Divergence of Regulatory Strategies at Hox Loci and the Origin of Tetrapod Digits. PLoS Biology, 2014, 12, e1001773.	2.6	137
8	Variegated gene expression caused by cell-specific long-range DNA interactions. Nature Cell Biology, 2011, 13, 944-951.	4.6	133
9	Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. ELife, 2014, 3, e02557.	2.8	125
10	HTSstation: A Web Application and Open-Access Libraries for High-Throughput Sequencing Data Analysis. PLoS ONE, 2014, 9, e85879.	1.1	93
11	Chapter 5 Threeâ€Ðimensional Organization of Gene Expression in Erythroid Cells. Current Topics in Developmental Biology, 2008, 82, 117-139.	1.0	75
12	Joining the loops: $\hat{I}^2 \hat{a} \in \mathbf{G}$ lobin gene regulation. IUBMB Life, 2008, 60, 824-833.	1.5	74
13	TADs and Their Borders: Free Movement or Building a Wall?. Journal of Molecular Biology, 2020, 432, 643-652.	2.0	70
14	Transcription and Chromatin Organization of a Housekeeping Gene Cluster Containing an Integrated β-Globin Locus Control Region. PLoS Genetics, 2008, 4, e1000016.	1.5	68
15	CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biology, 2019, 20, 272.	3.8	56
16	GKAP Acts as a Genetic Modulator of NMDAR Signaling to Govern Invasive Tumor Growth. Cancer Cell, 2018, 33, 736-751.e5.	7.7	53
17	Chromatin Architectures and Hox Gene Collinearity. Current Topics in Developmental Biology, 2013, 104, 113-148.	1.0	48
18	Detecting Long-Range Chromatin Interactions Using the Chromosome Conformation Capture Sequencing (4C-seq) Method. Methods in Molecular Biology, 2012, 786, 211-225.	0.4	43

Daan Noordermeer

#	Article	IF	CITATIONS
19	Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq). Methods in Molecular Biology, 2016, 1480, 223-241.	0.4	31
20	Large scale genomic reorganization of topological domains at the HoxD locus. Genome Biology, 2017, 18, 149.	3.8	31
21	A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes. Nature Communications, 2022, 13, 1039.	5.8	26
22	MadID, a Versatile Approach to Map Protein-DNA Interactions, Highlights Telomere-Nuclear Envelope Contact Sites in Human Cells. Cell Reports, 2018, 25, 2891-2903.e5.	2.9	24
23	Differential 3D chromatin organization and gene activity in genomic imprinting. Current Opinion in Genetics and Development, 2020, 61, 17-24.	1.5	21
24	Krox20 hindbrain regulation incorporates multiple modes of cooperation between cis-acting elements. PLoS Genetics, 2017, 13, e1006903.	1.5	18
25	Loss of EZH2-like or SU(VAR)3–9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina. Epigenetics and Chromatin, 2021, 14, 22.	1.8	18
26	Chromatin looping and organization at developmentally regulated gene loci. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 615-630.	5.9	15
27	CTCF: A misguided jack-of-all-trades in cancer cells. Computational and Structural Biotechnology Journal, 2022, 20, 2685-2698.	1.9	12
28	Statistics of chromatin organization during cell differentiation revealed by heterogeneous cross-linked polymers. Nature Communications, 2019, 10, 2626.	5.8	11
29	Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naÃ ⁻ ve pluripotency. ELife, 2019, 8, .	2.8	11
30	Of Dots and Stripes: The Morse Code of Micro-C Reveals the Ultrastructure of Transcriptional and Architectural Mammalian 3D Genome Organization. Molecular Cell, 2020, 78, 376-378.	4.5	4
31	Promoter–Enhancer Looping and Regulatory Neighborhoods. , 2018, , 435-456.		3
32	3D genome organization: setting the stage and introducing its players. Briefings in Functional Genomics, 2020, 19, 69-70.	1.3	0