Santiago Vazquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and In Vivo Proof of Concept of a Highly Potent Dual Inhibitor of Soluble Epoxide Hydrolase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. Journal of Medicinal Chemistry, 2022, 65, 4909-4925.	2.9	22
2	Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease. European Journal of Medicinal Chemistry, 2022, 236, 114354.	2.6	10
3	Soluble Epoxide Hydrolase Inhibitors: Design, Synthesis, <i>in vitro</i> Profiling and <i>in vivo</i> Evaluation in Murine Models of Pain. FASEB Journal, 2022, 36, .	0.2	0
4	A New Family of Subnanomolar inhibitors of Soluble Epoxide Hydrolase. FASEB Journal, 2022, 36, .	0.2	0
5	NMDA receptor antagonists reduce amyloid-β deposition by modulating calpain-1 signaling and autophagy, rescuing cognitive impairment in 5XFAD mice. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	13
6	Inhibition of NMDA receptors through a membrane-to-channel path. Nature Communications, 2022, 13, .	5.8	11
7	Synthesis, Characterization and HPLC Analysis of the (1S,2S,5R)-Diastereomer and the Enantiomer of the Clinical Candidate AR-15512. Molecules, 2021, 26, 906.	1.7	3
8	Inhibition of Soluble Epoxide Hydrolase Ameliorates Phenotype and Cognitive Abilities in a Murine Model of Niemann Pick Type C Disease. International Journal of Molecular Sciences, 2021, 22, 3409.	1.8	1
9	From the Design to the <i>In Vivo</i> Evaluation of Benzohomoadamantane-Derived Soluble Epoxide Hydrolase Inhibitors for the Treatment of Acute Pancreatitis. Journal of Medicinal Chemistry, 2021, 64, 5429-5446.	2.9	12
10	<i>In Vitro</i> , <i>In Vivo</i> , and Absorption, Distribution, Metabolism, and Excretion Evaluation of SF ₅ -Containing <i>N,N'</i> -Diarylureas as Antischistosomal Agents. Antimicrobial Agents and Chemotherapy, 2021, 65, e0061521.	1.4	7
11	Inhibition of 11β-HSD1 Ameliorates Cognition and Molecular Detrimental Changes after Chronic Mild Stress in SAMP8 Mice. Pharmaceuticals, 2021, 14, 1040.	1.7	2
12	2-(Piperidin-4-yl)acetamides as Potent Inhibitors of Soluble Epoxide Hydrolase with Anti-Inflammatory Activity. Pharmaceuticals, 2021, 14, 1323.	1.7	2
13	11β-HSD1 Inhibition Rescues SAMP8 Cognitive Impairment Induced by Metabolic Stress. Molecular Neurobiology, 2020, 57, 551-565.	1.9	12
14	2-Oxaadamant-1-yl Ureas as Soluble Epoxide Hydrolase Inhibitors: <i>In Vivo</i> Evaluation in a Murine Model of Acute Pancreatitis. Journal of Medicinal Chemistry, 2020, 63, 9237-9257.	2.9	14
15	Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels. ACS Chemical Biology, 2020, 15, 2331-2337.	1.6	18
16	Soluble Epoxide Hydrolase Inhibition to Face Neuroinflammation in Parkinson's Disease: A New Therapeutic Strategy. Biomolecules, 2020, 10, 703.	1.8	21
17	Pharmacological Inhibition of Soluble Epoxide Hydrolase as a New Therapy for Alzheimer's Disease. Neurotherapeutics, 2020, 17, 1825-1835.	2.1	45
18	A Novel NMDA Receptor Antagonist Protects against Cognitive Decline Presented by Senescent Mice. Pharmaceutics, 2020, 12, 284.	2.0	41

#	Article	IF	CITATIONS
19	A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors. European Journal of Medicinal Chemistry, 2019, 180, 613-626.	2.6	26
20	Adamantane Analogs: From Anti-Influenza Drugs to Soluble Epoxide Hydrolase Inhibitors for Acute Pancreatitis. Proceedings (mdpi), 2019, 22, 18.	0.2	0
21	Exploring the size of the lipophilic unit of the soluble epoxide hydrolase inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 115078.	1.4	17
22	Oral administration of a new HRI activator as a new strategy to improve highâ€fatâ€dietâ€induced glucose intolerance, hepatic steatosis, and hypertriglyceridaemia through FGF21. British Journal of Pharmacology, 2019, 176, 2292-2305.	2.7	14
23	New Diarylureas as Activators of the Heme-Regulated EIF2α Kinase for the Treatment of Type 2 Diabetes Mellitus. Proceedings (mdpi), 2019, 22, .	0.2	0
24	Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer's disease mouse model. Aging, 2019, 11, 11591-11608.	1.4	49
25	11β-HSD1 Inhibition by RL-118 Promotes Autophagy and Correlates with Reduced Oxidative Stress and Inflammation, Enhancing Cognitive Performance in SAMP8 Mouse Model. Molecular Neurobiology, 2018, 55, 8904-8915.	1.9	25
26	Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Molecular Metabolism, 2018, 8, 117-131.	3.0	77
27	Aniline-Based Inhibitors of Influenza H1N1 Virus Acting on Hemagglutinin-Mediated Fusion. Journal of Medicinal Chemistry, 2018, 61, 98-118.	2.9	31
28	Pentafluorosulfanyl-containing Triclocarban Analogs with Potent Antimicrobial Activity. Molecules, 2018, 23, 2853.	1.7	25
29	Exploring N-acyl-4-azatetracyclo[5.3.2.02,6.08,10]dodec-11-enes as 11β-HSD1 Inhibitors. Molecules, 2018, 23, 536.	1.7	1
30	Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. ACS Chemical Neuroscience, 2018, 9, 2722-2730.	1.7	7
31	Palladium-catalyzed cocyclotrimerization of arynes with a pyramidalized alkene. Chemical Communications, 2018, 54, 5996-5999.	2.2	8
32	Towards a Novel Class of Multitarget-Directed Ligands: Dual P2X7–NMDA Receptor Antagonists. Molecules, 2018, 23, 230.	1.7	20
33	Novel Quinazolinone Inhibitors of ALK2 Flip between Alternate Binding Modes: Structure–Activity Relationship, Structural Characterization, Kinase Profiling, and Cellular Proof of Concept. Journal of Medicinal Chemistry, 2018, 61, 7261-7272.	2.9	27
34	Escape from adamantane: Scaffold optimization of novel P2X7 antagonists featuring complex polycycles. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 759-763.	1.0	11
35	Slow but Steady Wins the Race: Dissimilarities among New Dual Inhibitors of the Wild-Type and the V27A Mutant M2 Channels of Influenza A Virus. Journal of Medicinal Chemistry, 2017, 60, 3727-3738.	2.9	20
36	Design, synthesis and inÂvivo study of novel pyrrolidine-based 11î²-HSD1 inhibitors for age-related cognitive dysfunction. European Journal of Medicinal Chemistry, 2017, 139, 412-428.	2.6	12

#	Article	IF	CITATIONS
37	Heme-Regulated eIF2α Kinase Modulates Hepatic FGF21 and Is Activated by PPARβ/δ Deficiency. Diabetes, 2016, 65, 3185-3199.	0.3	31
38	Mechanism of the Pseudoirreversible Binding of Amantadine to the M2 Proton Channel. Journal of the American Chemical Society, 2016, 138, 15345-15358.	6.6	21
39	Syntheses of Cinacalcet: An Enantiopure Active Pharmaceutical Ingredient (API). Synthesis, 2016, 48, 783-803.	1.2	19
40	Ritter reaction-mediated syntheses of 2-oxaadamantan-5-amine, a novel amantadine analog. Tetrahedron Letters, 2015, 56, 1272-1275.	0.7	8
41	Synthesis of biaryls via intramolecular free radical ipso-substitution reactions. Tetrahedron, 2015, 71, 6701-6719.	1.0	30
42	New polycyclic dual inhibitors of the wild type and the V27A mutant M2 channel of the influenza A virus with unexpected binding mode. European Journal of Medicinal Chemistry, 2015, 96, 318-329.	2.6	18
43	Novel 11β-HSD1 inhibitors: C-1 versus C-2 substitution and effect of the introduction of an oxygen atom in the adamantane scaffold. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4250-4253.	1.0	3
44	Searching for novel applications of the benzohomoadamantane scaffold in medicinal chemistry: Synthesis of novel 111²-HSD1 inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 7607-7617.	1.4	4
45	Antibacterial activity of novel benzopolycyclic amines. Bioorganic and Medicinal Chemistry, 2015, 23, 290-296.	1.4	7
46	Direct reductive alkylation of amine hydrochlorides with aldehyde bisulfite adducts. Tetrahedron Letters, 2014, 55, 2548-2550.	0.7	4
47	Novel benzopolycyclic amines with NMDA receptor antagonist activity. Bioorganic and Medicinal Chemistry, 2014, 22, 2678-2683.	1.4	21
48	Azapropellanes with Anti-Influenza A Virus Activity. ACS Medicinal Chemistry Letters, 2014, 5, 831-836.	1.3	23
49	Easily Accessible Polycyclic Amines that Inhibit the Wild-Type and Amantadine-Resistant Mutants of the M2 Channel of Influenza A Virus. Journal of Medicinal Chemistry, 2014, 57, 5738-5747.	2.9	51
50	Dimerization of Pyramidalized 3,4,8,9-Tetramethyltetracyclo [4.4.0.03,9.04,8]dec-1(6)-ene to a Hydrocarbon Featuring Four Cyclohexane Rings in Boat Conformations. Angewandte Chemie - International Edition, 2014, 53, 8195-8199.	7.2	6
51	3-Azatetracyclo[5.2.1.1 ^{5,8} .0 ^{1,5}]undecane Derivatives: From Wild-Type Inhibitors of the M2 Ion Channel of Influenza A Virus to Derivatives with Potent Activity against the V27A Mutant. Journal of Medicinal Chemistry, 2013, 56, 9265-9274.	2.9	46
52	Role of the viral hemagglutinin in the anti-influenza virus activity of newly synthesized polycyclic amine compounds. Antiviral Research, 2013, 99, 281-291.	1.9	26
53	Synthesis and Anti-influenza A Virus Activity of 2,2-Dialkylamantadines and Related Compounds. ACS Medicinal Chemistry Letters, 2012, 3, 1065-1069.	1.3	33
54	Synthesis of benzopolycyclic cage amines: NMDA receptor antagonist, trypanocidal and antiviral activities. Bioorganic and Medicinal Chemistry, 2012, 20, 942-948.	1.4	17

#	Article	IF	CITATIONS
55	Exploring the Size Limit of Templates for Inhibitors of the M2 Ion Channel of Influenza A Virus. Journal of Medicinal Chemistry, 2011, 54, 2646-2657.	2.9	69
56	Synthesis of 1-substituted cis-bicyclo[3.3.0]octane-3,7-dione derivatives as potential precursors of polyquinanes. Arkivoc, 2011, 2010, 74-89.	0.3	3
57	Attempted synthesis of 2-oxo-N-phenyltetracyclo[7.2.1.02,6.05,11]-dodecane-9,10-dicarboximide by intramolecular α-ketocarbene insertion into an unactivated C-H bond. Arkivoc, 2011, 2011, 358-368.	0.3	0
58	Synthesis and Antiviral Evaluation of Bisnoradamantane Sulfites and Related Compounds. Medicinal Chemistry, 2011, 7, 135-140.	0.7	0
59	New oxapolycyclic cage amines with NMDA receptor antagonist and trypanocidal activities. Bioorganic and Medicinal Chemistry, 2010, 18, 46-57.	1.4	19
60	Polycyclic <i>N</i> â€Benzamido Imides with Potent Activity against Vaccinia Virus. ChemMedChem, 2010, 5, 2072-2078.	1.6	12
61	Double Methylenecyclopentane Annulation of Succinimides: Easy Access to 3,7â€Dioxobicyclo[3.3.0]octaneâ€1,5â€dicarboximides. European Journal of Organic Chemistry, 2009, 2009, 3081-3087.	1.2	3
62	Synthesis and pharmacological evaluation of (2-oxaadamant-1-yl)amines. Bioorganic and Medicinal Chemistry, 2009, 17, 3198-3206.	1.4	22
63	Synthesis and pharmacological evaluation of several ring-contracted amantadine analogs. Bioorganic and Medicinal Chemistry, 2008, 16, 9925-9936.	1.4	33
64	Nitrile Ylides: Generation, Properties and Synthetic Applications. Current Organic Chemistry, 2007, 11, 741-772.	0.9	17
65	Dehalogenation of 1,3-Diiodotricyclo[3.3.0.03,7]octane: Generation of 1,3-Dehydrotricyclo[3.3.0.03,7]octane, a 2,5-Methano-Bridged [2.2.1]Propellane. Chemistry - A European Journal, 2007, 13, 1522-1532.	1.7	6
66	A Theoretical Study of Tricyclo[4.2.1.0 ^{2,5}]nonâ€2(5)â€ene, Tricyclo[4.2.2.0 ^{2,5}]decâ€2(5)â€ene and Related Pyramidalized Alkenes. European Journal of Organic Chemistry, 2007, 2007, 4493-4498.	1.2	5
67	Generation and reactions of new ether and acetal functionalized tricyclo[3.3.0.03,7]oct-1(5)-ene derivatives. DSC and NMR studies on the [2+2] retrocycloaddition of several cyclobutane dimers. Tetrahedron, 2007, 63, 4669-4679.	1.0	9
68	Synthesis of enantiomeric bridgehead substituted bisnoradamantane derivatives. Tetrahedron, 2007, 63, 8027-8036.	1.0	7
69	Synthesis of new cyclopentane phosphine oxides. Arkivoc, 2007, 2007, 8-19.	0.3	2
70	Alternative syntheses of the D2d symmetric 1,3,5,7-tetraiodotricyclo[3.3.0.03,7]octane. Tetrahedron, 2006, 62, 7436-7444.	1.0	9
71	Generation and trapping of tricyclo[3.3.0.03,7]oct-1(5)-ene derivatives containing carbonyl functionalities. Tetrahedron, 2006, 62, 7645-7652.	1.0	15
72	Diels–Alder reactions of highly pyramidalized tricyclo[3.3.0.03,7]oct-1(5)-ene derivatives: further chemistry of pentacyclo[6.4.0.02,10.03,7.04,9]dodeca-5,8,11-triene. Tetrahedron, 2005, 61, 3593-3603.	1.0	9

#	Article	IF	CITATIONS
73	Chemistry of pyramidalized alkenes. Tetrahedron, 2005, 61, 5147-5208.	1.0	83
74	Chemistry of Pyramidalized Alkenes. ChemInform, 2005, 36, no.	0.1	0
75	Generation and Reactions of Two New Functionalized Tricyclo[3.3.0.03,7]oct-1(5)-ene Derivatives. Journal of Organic Chemistry, 2005, 70, 1945-1948.	1.7	14
76	Generation, Trapping, and Dimerization of Pentacyclo [6.4.0.02,10.03,7.04,9] dodeca-5,8,11-triene: An Uncatalyzed Thermal [2 + 2 + 2 + 2] Cycloaddition ChemInform, 2003, 34, no.	0.1	0
77	Generation, Trapping, and Dimerization of Pentacyclo[6.4.0.02,10.03,7.04,9]dodeca-5,8,11-triene: An Uncatalyzed Thermal[2+2+2+2] Cycloaddition. Angewandte Chemie - International Edition, 2003, 42, 4049-4051.	7.2	23
78	Alternative Syntheses of the New D2dSymmetric Tetramethyl Tricyclo- [3.3.0.03,7]octane-1,3,5,7-tetracarboxylate. Journal of Organic Chemistry, 2003, 68, 8715-8718.	1.7	16
79	Easy access to cis-1,3-disubstituted cyclopentane 1,4-diphosphines. Arkivoc, 2003, 2003, 16-23.	0.3	1
80	GIAO-DFT study of13C NMR chemical shifts of highly pyramidalized alkenes. Perkin Transactions II RSC, 2002, , 2100-2103.	1.1	17
81	Towards chiral non-racemic cis -1,3-disubstituted cyclopentane 1,4-diphosphines. Tetrahedron: Asymmetry, 2002, 13, 759-778.	1.8	3
82	Straightforward regio- and stereo-selective synthesis of t-2-[(diphenylphosphinoyl)methyl]-c-3-(disubstitutedphosphinoyl)-r-1-cyclopentanols. Tetrahedron, 2002, 58, 3473-3484.	1.0	6
83	Synthesis and reactivity of a new functionalized and highly pyramidalized alkene containing the bisnoradamantane skeleton. Tetrahedron, 2002, 58, 10081-10086.	1.0	14
84	Formation and cleavage of bisnoradamantane derivatives through SmI2 reductions. Tetrahedron, 2001, 57, 2419-2425.	1.0	9
85	Cross-coupling of a functionalized highly pyramidalized alkene: DSC and NMR study of the [2+2] retrocycloaddition of cyclobutane cross products, hyperstability and pyramidalization of the formed dienes. Tetrahedron, 2001, 57, 8511-8520.	1.0	12
86	Hunsdiecker-Type Bromodecarboxylation of Carboxylic Acids with Iodosobenzene Diacetate–Bromine. Tetrahedron, 2000, 56, 2703-2707.	1.0	29
87	A concise approach to the preparation of 2-hydroxydiarylketones by an intramolecular acyl radical ipso substitution. Tetrahedron Letters, 2000, 41, 9667-9671.	0.7	34
88	Cross-Coupling of Highly Pyramidalized Alkenes:  A Straightforward Access to Functionalized Tetrasecododecahedradienes. Organic Letters, 2000, 2, 4225-4228.	2.4	16
89	Synthesis of Several 8-Halopentacyclo[6.4.0.02,10.03,7.04,9]dodecane Derivatives. Synthesis, 1999, 1999, 854-858.	1.2	4
90	Highly pyramidalized tricyclo[3.3.0.03,7]oct-1(5)-ene and related compounds: High-level ab initio study, synthesis and trapping of tetracyclo[5.2.1.02,6.03,8] dec-7-ene, and cross-coupling reactions. Tetrahedron, 1998, 54, 4679-4696.	1.0	34

#	Article	IF	CITATIONS
91	Ï€â^'ï€-Interactions in Pentacyclo- [8.2.1.1.2,51.4,718,11]hexadeca-1,7-diene. Journal of Organic Chemistry, 1998, 63, 3478-3480.	1.7	14
92	New Applications of Dimethyl Pentacyclo[6.4.0.02,10.03,7.04,9]dodeca-5,11-diene-8,9-dicarboxylate in the Synthesis of Polycyclic Compounds. Synthesis, 1997, 1997, 668-672.	1.2	4
93	Pentacyclo[8.2.1.12,5.14,7.18,11]hexadeca-1,7-diene and its 4,5,10,11-tetramethyl derivative, two highly hyperstable slightly pyramidalized dienes. Tetrahedron, 1997, 53, 9727-9734.	1.0	7
94	Low temperature X-ray diffraction analysis of 4,5,10,11-tetramethyl-heptacyclo[8.2.1.12,5.14,7.18,11.01,8.02,7]hexadecane: DSC, MM2 and 1H NMR study of its [2 + 2]retrocycloaddition to an isomeric diene. Tetrahedron Letters, 1996, 37, 8601-8604.	0.7	20
95	Synthesis, chemical trapping and dimerization of tricyclo[3.3.0.03,7]oct-1(5)-ene, the consummate member of a series of pyramidalized alkenes. Tetrahedron Letters, 1996, 37, 8605-8608.	0.7	29
96	Conformational Analysis of 2,4-Disubstituted 9-Oxobicyclo[3.3.1]nonane Derivatives. Collection of Czechoslovak Chemical Communications, 1995, 60, 216-223.	1.0	0
97	Synthese, Abfangreaktionen und Dimerisierung von 3,7â€Dimethyltricyclo[3.3.0.0 ^{3, 7}]octâ€I(5)â€en: [2 + 2]â€Retrocycloaddition des Cyclobutandimers. Angewandte Chemie, 1995, 107, 1011-1012.	1.6	20
98	Synthesis, Chemical Trapping, and Dimerization of 3,7-Dimethyltricyclo[3.3.0.03, 7]oct-1(5)-ene:[2+ 2] Retrocycloaddition of the Cyclobutane Dimer. Angewandte Chemie International Edition in English, 1995, 34, 912-914.	4.4	40
99	Inexpensive Synthesis of 3,7-Disubstituted Tricyclo[3.3.0.03,7]octane-1,5-diols. Synthetic Communications, 1995, 25, 1287-1293.	1.1	7
100	Conformation of tricyclo [4.3.1.12,5]undec-3-en-10-one. Magnetic Resonance in Chemistry, 1994, 32, 210-212.	1.1	2