Daniel T Trugman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843663/publications.pdf

Version: 2024-02-01

37 papers

1,710 citations

393982 19 h-index 37 g-index

44 all docs

44 docs citations

44 times ranked 1579 citing authors

#	Article	IF	CITATIONS
1	Machine Learning in Seismology: Turning Data into Insights. Seismological Research Letters, 2019, 90, 3-14.	0.8	302
2	Searching for hidden earthquakes in Southern California. Science, 2019, 364, 767-771.	6.0	212
3	GrowClust: A Hierarchical Clustering Algorithm for Relative Earthquake Relocation, with Application to the Spanish Springs and Sheldon, Nevada, Earthquake Sequences. Seismological Research Letters, 2017, 88, 379-391.	0.8	165
4	3D fault architecture controls the dynamism of earthquake swarms. Science, 2020, 368, 1357-1361.	6.0	117
5	Acoustic emission and microslip precursors to stickâ€slip failure in sheared granular material. Geophysical Research Letters, 2013, 40, 5627-5631.	1.5	105
6	Strong Correlation between Stress Drop and Peak Ground Acceleration for Recent MÂ1–4 Earthquakes in the San Francisco Bay Area. Bulletin of the Seismological Society of America, 2018, 108, 929-945.	1.1	70
7	Comparing EGF Methods for Estimating Corner Frequency and Stress Drop From <i>P</i> Wave Spectra. Journal of Geophysical Research: Solid Earth, 2019, 124, 3966-3986.	1.4	69
8	Pervasive Foreshock Activity Across Southern California. Geophysical Research Letters, 2019, 46, 8772-8781.	1.5	63
9	Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 2017, 122, 2890-2910.	1.4	61
10	Peak Ground Displacement Saturates Exactly When Expected: Implications for Earthquake Early Warning. Journal of Geophysical Research: Solid Earth, 2019, 124, 4642-4653.	1.4	55
11	Source Spectral Properties of Small to Moderate Earthquakes in Southern Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122, 8021-8034.	1.4	44
12	A comparison of longâ€term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields. Journal of Geophysical Research: Solid Earth, 2016, 121, 225-247.	1.4	36
13	A 2D Pseudodynamic Rupture Model Generator for Earthquakes on Geometrically Complex Faults. Bulletin of the Seismological Society of America, 2014, 104, 95-112.	1.1	30
14	SeismoGen: Seismic Waveform Synthesis Using GAN With Application to Seismic Data Augmentation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020077.	1.4	30
15	Stress-Drop and Source Scaling of the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1859-1871.	1.1	29
16	Imaging Stress and Faulting Complexity Through Earthquake Waveform Similarity. Geophysical Research Letters, 2020, 47, e2019GL085888.	1.5	27
17	Does Earthquake Stress Drop Increase With Depth in the Crust?. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022314.	1.4	25
18	Big Data Seismology. Reviews of Geophysics, 2022, 60, .	9.0	24

#	Article	IF	Citations
19	Deciphering the Stress State of Seismogenic Faults in Oklahoma and Southern Kansas Based on an Improved Stress Map. Journal of Geophysical Research: Solid Earth, 2019, 124, 12920-12934.	1.4	23
20	Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho. Geophysical Research Letters, 2018, 45, 5352-5361.	1.5	21
21	The Spatiotemporal Evolution of Granular Microslip Precursors to Laboratory Earthquakes. Geophysical Research Letters, 2020, 47, e2020GL088404.	1.5	20
22	Did stresses from the Cerro Prieto Geothermal Field influence the El Mayorâ€Cucapah rupture sequence?. Geophysical Research Letters, 2014, 41, 8767-8774.	1.5	19
23	Directivity Modes of Earthquake Populations with Unsupervised Learning. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018299.	1.4	16
24	Fault Interactions Enhance Highâ€Frequency Earthquake Radiation. Geophysical Research Letters, 2021, 48, e2021GL095271.	1.5	15
25	Earthquake Source Complexity Controls the Frequency Dependence of Nearâ€Source Radiation Patterns. Geophysical Research Letters, 2021, 48, e2021GL095022.	1.5	14
26	Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California. Geophysical Journal International, 2015, 202, 914-919.	1.0	13
27	Machine Learning for Fast and Reliable Source-Location Estimation in Earthquake Early Warning. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	13
28	Synchronous low frequency earthquakes and implications for deep San Andreas Fault slip. Earth and Planetary Science Letters, 2015, 424, 132-139.	1.8	11
29	The Proliferation of Induced Seismicity in the Permian Basin, Texas. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021921.	1.4	11
30	Impact Versus Frictional Earthquake Models for Highâ€Frequency Radiation in Complex Fault Zones. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022313.	1.4	11
31	Tidal modulation of seismicity at the Coso geothermal field. Earth and Planetary Science Letters, 2022, 579, 117335.	1.8	11
32	Source Spectral Properties of Earthquakes in the Delaware Basin of West Texas. Seismological Research Letters, 2021, 92, 2477-2489.	0.8	10
33	Improved Stress Drop Estimates for M 1.5 to 4 Earthquakes in Southern California From 1996 to 2019. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8
34	Modeling dynamic triggering of tectonic tremor using a brittleâ€ductile friction model. Geophysical Research Letters, 2013, 40, 5075-5079.	1.5	7
35	Resolving Differences in the Rupture Properties of M5 Earthquakes in California Using Bayesian Source Spectral Analysis. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
36	Statistical tests on clustered global earthquake synthetic data sets. Journal of Geophysical Research: Solid Earth, 2015, 120, 5693-5716.	1.4	6

#	Article	IF	CITATIONS
37	The Highâ€Frequency Signature of Slow and Fast Laboratory Earthquakes. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	6