
Olga P Verkhoglyadova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electromagnetic energy input and dissipation. , 2022, , 301-355.		2
2	On the Northâ€ S outh Asymmetry of Coâ€ S eismic Ionospheric Disturbances During the 16 September 2015 Illapel M8.3 Earthquake. Geophysical Research Letters, 2022, 49, .	1.5	2
3	Understanding Large-Scale Structure in Global Ionospheric Maps With Visual and Statistical Analyses. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	2
4	Polar Topside TEC Enhancement Revealed by Jasonâ€⊋ Measurements. Earth and Space Science, 2021, 8, e2020EA001429.	1.1	1
5	Addressing Gaps in Space Weather Operations and Understanding With Small Satellites. Space Weather, 2021, 19, e2020SW002566.	1.3	5
6	Classification of High Density Regions in Global Ionospheric Maps With Neural Networks. Earth and Space Science, 2021, 8, e2021EA001639.	1.1	3
7	Quantifying Contributions of External Drivers to the Global Ionospheric State. Space Weather, 2021, 19, e2021SW002752.	1.3	4
8	Auroral heating of plasma patches due to highâ€latitude reconnection. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029657.	0.8	0
9	Impact of space weather on climate and habitability of terrestrial-type exoplanets. International Journal of Astrobiology, 2020, 19, 136-194.	0.9	125
10	A New Framework to Incorporate High‣atitude Input for Mesoscale Electrodynamics. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027562.	0.8	7
11	Thermosphereâ€lonosphere Modeling With Forecastable Inputs: Case Study of the June 2012 Highâ€Speed Stream Geomagnetic Storm. Space Weather, 2020, 18, e2019SW002352.	1.3	3
12	Mediumâ€Range Forecasting of Solar Wind: A Case Study of Building Regression Model With Space Weather Forecast Testbed (SWFT). Space Weather, 2020, 18, e2019SW002433.	1.3	2
13	Evaluation of Total Electron Content Prediction Using Three Ionosphereâ€Thermosphere Models. Space Weather, 2020, 18, e2020SW002452.	1.3	6
14	Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal 7.8 Gorkha Earthquake. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027200.	0.8	12
15	Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sensing, 2019, 11, 1734.	1.8	26
16	Upper Atmospheric Responses to Surface Disturbances: An Observational Perspective. Radio Science, 2019, 54, 1076-1098.	0.8	46
17	Temperature Trends and Anomalies in Modern Satellite Data: Infrared Sounding and GPS Radio Occultation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,431-11,444.	1.2	11
18	Physicsâ€Based Modeling of Earthquakeâ€Induced Ionospheric Disturbances. Journal of Geophysical Research: Space Physics, 2018, 123, 8021-8038.	0.8	22

#	Article	IF	CITATIONS
19	Semianalytical Estimation of Energy Deposition in the Ionosphere by Monochromatic Alfvén Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 5210-5222.	0.8	12
20	The variometric approach to real-time high-frequency geodesy. Rendiconti Lincei, 2018, 29, 95-108.	1.0	18
21	Multiinstrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm. Radio Science, 2017, 52, 146-165.	0.8	15
22	Nonlinear ionospheric responses to largeâ€amplitude infrasonicâ€acoustic waves generated by undersea earthquakes. Journal of Geophysical Research: Space Physics, 2017, 122, 2272-2291.	0.8	32
23	Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration. Scientific Reports, 2017, 7, 46607.	1.6	86
24	Geospace system responses to the St. Patrick's Day storms in 2013 and 2015. Journal of Geophysical Research: Space Physics, 2017, 122, 6901-6906.	0.8	51
25	Satelliteâ€based observations of tsunamiâ€induced mesosphere airglow perturbations. Geophysical Research Letters, 2017, 44, 522-532.	1.5	13
26	Modeling Particle Acceleration and Transport at a 2â€Ð CMEâ€Ðriven Shock. Journal of Geophysical Research: Space Physics, 2017, 122, 10,938.	0.8	44
27	Revisiting Ionosphereâ€Thermosphere Responses to Solar Wind Driving in Superstorms of November 2003 and 2004. Journal of Geophysical Research: Space Physics, 2017, 122, 10,824.	0.8	21
28	lonosphereâ€ŧhermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies. Space Weather, 2017, 15, 1102-1124.	1.3	18
29	Finding multiscale connectivity in our geospace observational system: Network analysis of total electron content. Journal of Geophysical Research: Space Physics, 2017, 122, 7683-7697.	0.8	12
30	Scientific challenges in thermosphere-ionosphere forecasting – conclusions from the October 2014 NASA JPL community workshop. Journal of Space Weather and Space Climate, 2016, 6, E01.	1.1	8
31	Statistical characterization of ionosphere anomalies and their relationship to space weather events. Journal of Space Weather and Space Climate, 2016, 6, A5.	1.1	17
32	On forecasting ionospheric total electron content responses to high-speed solar wind streams. Journal of Space Weather and Space Climate, 2016, 6, A19.	1.1	9
33	Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling. Journal of Space Weather and Space Climate, 2016, 6, A20.	1.1	12
34	Solar wind driving of ionosphereâ€thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015. Journal of Geophysical Research: Space Physics, 2016, 121, 8900-8923.	0.8	48
35	Review and perspectives: Understanding naturalâ€hazardsâ€generated ionospheric perturbations using GPS measurements and coupled modeling. Radio Science, 2016, 51, 951-961.	0.8	53
36	Nighttime mesospheric hydroxyl enhancements during SEP events and accompanying geomagnetic storms: Ionization rate modeling and Aura satellite observations. Journal of Geophysical Research: Space Physics, 2016, 121, 6017-6030.	0.8	5

#	Article	IF	CITATIONS
37	Evaluation of CMIP5 upper troposphere and lower stratosphere geopotential height with GPS radio occultation observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1678-1689.	1.2	10
38	A new physicsâ€based modeling approach for tsunamiâ€ionosphere coupling. Geophysical Research Letters, 2015, 42, 4736-4744.	1.5	32
39	Effect of smallâ€scale ionospheric variability on GNSS radio occultation data quality. Journal of Geophysical Research: Space Physics, 2015, 120, 7937-7951.	0.8	3
40	Intermediateâ€scale plasma irregularities in the polar ionosphere inferred from GPS radio occultation. Geophysical Research Letters, 2015, 42, 688-696.	1.5	13
41	Use of radio occultation to probe the high-latitude ionosphere. Atmospheric Measurement Techniques, 2015, 8, 2789-2800.	1.2	8
42	Effects of two large solar energetic particle events on middle atmosphere nighttime odd hydrogen and ozone content: Aura/MLS and TIMED/SABER measurements. Journal of Geophysical Research: Space Physics, 2015, 120, 12-29.	0.8	10
43	Localized thermosphere ionization events during the highâ€speed stream interval of 29 April to 5 May 2011. Journal of Geophysical Research: Space Physics, 2015, 120, 675-696.	0.8	9
44	Medium-Range Thermosphere-Ionosphere Storm Forecasts. Space Weather, 2015, 13, 125-129.	1.3	18
45	A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem. Physics Reports, 2015, 557, 1-23.	10.3	30
46	Extremely intense ELF magnetosonic waves: A survey of polar observations. Journal of Geophysical Research: Space Physics, 2014, 119, 964-977.	0.8	77
47	Solar filament impact on 21 January 2005: Geospace consequences. Journal of Geophysical Research: Space Physics, 2014, 119, 5401-5448.	0.8	20
48	LISA-PF radiation monitor performance during the evolution of SEP events for the monitoring of test-mass charging. Classical and Quantum Gravity, 2014, 31, 045018.	1.5	7
49	Estimation of Winds from GPS Radio Occultations. Journal of Atmospheric and Oceanic Technology, 2014, 31, 2451-2461.	0.5	12
50	lonospheric TEC, thermospheric cooling and Σ[O/N2] compositional changes during the 6–17 March 2012 magnetic storm interval (CAWSES II). Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 115-116, 41-51.	0.6	14
51	The interplanetary causes of geomagnetic activity during the 7–17 March 2012 interval: a CAWSES II overview. Journal of Space Weather and Space Climate, 2014, 4, A02.	1.1	58
52	Energetic electron (>10 keV) microburst precipitation, ~5–15 s Xâ€ray pulsations, chorus, and waveâ€particle interactions: A review. Journal of Geophysical Research: Space Physics, 2013, 118, 2296-2312.	0.8	75
53	Theoretical analysis of Poynting flux and polarization for ELFâ€VLF electromagnetic waves in the Earth's magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 7695-7702.	0.8	10

54 Diffusive shock acceleration and large SEP events. , 2013, , .

0

#	Article	IF	CITATIONS
55	Modeling of radial dependence of Fe/O elemental abundance ratio in mixed SEP events with the PATH code. AIP Conference Proceedings, 2013, , .	0.3	2
56	Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): external high speed stream drivers. Annales Geophysicae, 2013, 31, 263-276.	0.6	51
57	Comment on "Storming the Bastille: the effect of electric fields on the ionospheric F-layer" by Rishbeth et al. (2010). Annales Geophysicae, 2013, 31, 145-150.	0.6	17
58	Mapping GPS Radio Occultation Data by Bayesian Interpolation. Journal of Atmospheric and Oceanic Technology, 2012, 29, 1062-1074.	0.5	20
59	Diffusive shock acceleration in large SEP events. , 2012, , .		4
60	Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study. Earth, Planets and Space, 2012, 64, 1287-1294.	0.9	88
61	Efficiency of particle acceleration at oblique strong CME shocks from 0.13 to 2.5 AU: PATH modeling. , 2012, , .		1
62	The radiation, interplanetary shocks, and coronal sources (RISCS) toolset. , 2012, , .		0
63	Preface: 11th Annual International Astrophysics Conference. , 2012, , .		Ο
64	Extreme changes in the dayside ionosphere during a Carrington-type magnetic storm. Journal of Space Weather and Space Climate, 2012, 2, A05.	1.1	23
65	RADIAL DEPENDENCE OF PEAK PROTON AND IRON ION FLUXES IN SOLAR ENERGETIC PARTICLE EVENTS: APPLICATION OF THE PATH CODE. Astrophysical Journal, 2012, 757, 75.	1.6	22
66	Dayside ELF electromagnetic wave survey: A Polar statistical study of chorus and hiss. Journal of Geophysical Research, 2012, 117, .	3.3	28
67	On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake. Geophysical Research Letters, 2012, 39, .	1.5	41
68	How Do Coronal Hole Storms Affect the Upper Atmosphere?. Eos, 2012, 93, 77-79.	0.1	8
69	Correction to "Quasi-coherent chorus properties: 1. Implications for wave-particle interactionsâ€. Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	Ο
70	What controls the maximum particle energy in large SEP events. , 2012, , .		1
71	Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: Differences and distinguishing features. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	117
72	Quasi-coherent chorus properties: 1. Implications for wave-particle interactions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	42

#	Article	IF	CITATIONS
73	Ionospheric VTEC and thermospheric infrared emission dynamics during corotating interaction region and high-speed stream intervals at solar minimum: 25 March to 26 April 2008. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	34
74	The effects of earthward directed interplanetary coronal mass ejections on nearâ€Earth S band signal links. Radio Science, 2011, 46, .	0.8	2
75	Mirror instability upstream of the termination shock (TS) and in the heliosheath. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1398-1404.	0.6	24
76	Mirror Modes in the Heliosheath. , 2011, , .		0
77	Magnetic Decreases (MDs) and mirror modes: two different plasma β changing mechanisms. Nonlinear Processes in Geophysics, 2010, 17, 467-479.	0.6	11
78	JPL/USC GAIM: On the impact of using COSMIC and groundâ€based GPS measurements to estimate ionospheric parameters. Journal of Geophysical Research, 2010, 115, .	3.3	58
79	Properties of obliquely propagating chorus. Journal of Geophysical Research, 2010, 115, .	3.3	47
80	Pitch angle transport of electrons due to cyclotron interactions with the coherent chorus subelements. Journal of Geophysical Research, 2010, 115, .	3.3	51
81	Survey of Poynting flux of whistler mode chorus in the outer zone. Journal of Geophysical Research, 2010, 115, .	3.3	94
82	Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event. Journal of Geophysical Research, 2010, 115, .	3.3	49
83	Introduction to the special section on Chorus: Chorus and its role in space weather. Journal of Geophysical Research, 2010, 115, .	3.3	12
84	Polarization properties of Gendrin mode waves observed in the Earth's magnetosphere: observations and theory. Annales Geophysicae, 2009, 27, 4429-4433.	0.6	14
85	Properties of dayside nonlinear rising tone chorus emissions at large L observed by GEOTAIL. Earth, Planets and Space, 2009, 61, 625-628.	0.9	13
86	Correction to "Magnetic decrease formation from <1 AU to â^1⁄45 AU: Corotating interaction region reverse shocks― Journal of Geophysical Research, 2009, 114, .	3.3	1
87	A brief review of "solar flare effects―on the ionosphere. Radio Science, 2009, 44, .	0.8	138
88	Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm "recovery―phase. Geophysical Research Letters, 2009, 36, .	1.5	38
89	Properties of dayside outer zone chorus during HILDCAA events: Loss of energetic electrons. Journal of Geophysical Research, 2009, 114, .	3.3	116
90	Magnetic decrease formation from <1 AU to â^1¼5 AU: Corotating interaction region reverse shocks. Journal of Geophysical Research, 2009, 114, .	3.3	20

Olga P Verkhoglyadova

#	Article	IF	CITATIONS
91	Mirror instability and Lâ€mode electromagnetic ion cyclotron instability: Competition in the Earth's magnetosheath. Journal of Geophysical Research, 2009, 114, .	3.3	49
92	SHOCK GEOMETRY AND SPECTRAL BREAKS IN LARGE SEP EVENTS. Astrophysical Journal, 2009, 702, 998-1004.	1.6	61
93	USING THE PATH CODE FOR MODELING GRADUAL SEP EVENTS IN THE INNER HELIOSPHERE. Astrophysical Journal, 2009, 693, 894-900.	1.6	44
94	Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of $30\hat{a}\in$ "31 October 2003. Journal of Geophysical Research, 2008, 113, .	3.3	190
95	How Efficient are Coronal Mass Ejections at Accelerating Solar Energetic Particles?. AIP Conference Proceedings, 2008, , .	0.3	18
96	Examination of the Last Large Solar Energetic Particle Events of Solar Cycle 23. AIP Conference Proceedings, 2008, , .	0.3	3
97	Modeling a mixed SEP event with the PATH model: December 13, 2006. AIP Conference Proceedings, 2008,	0.3	4
98	MHD Simulations of CME-Driven Shocks: Structures Relevant to Particle Acceleration. AIP Conference Proceedings, 2008, , .	0.3	2
99	Formation of Power Law Tail with Spectral Index-5 Inside and Beyond the Heliosphere. AIP Conference Proceedings, 2008, , .	0.3	29
100	Modeling Particle Acceleration at Interplanetary Shocks. AIP Conference Proceedings, 2008, , .	0.3	1
101	On transport of charged particle in the solar wind. AIP Conference Proceedings, 2008, , .	0.3	3
102	Comment on "Comment on the abundances of rotational and tangential discontinuities in the solar wind―by M. Neugebauer. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	17
103	Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event. Annales Geophysicae, 2007, 25, 569-574.	0.6	40
104	Particle Acceleration at Interplanetary Shocks. Space Science Reviews, 2007, 130, 255-272.	3.7	83
105	TEMPORAL DEVELOPMENT OF DAYSIDE TEC VARIATIONS DURING THE OCTOBER 30, 2003 SUPERSTORM: MATCHING MODELING TO OBSERVATIONS. , 2007, , 69-77.		4
106	Extreme solar EUV flares and ICMEs and resultant extreme ionospheric effects: Comparison of the Halloween 2003 and the Bastille Day events. Radio Science, 2006, 41, .	0.8	19
107	Dayside ionospheric (GPS) response to corotating solar wind streams. Geophysical Monograph Series, 2006, , 245-270.	0.1	14
108	Particle transport in a vortex medium. Advances in Space Research, 2005, 35, 660-664.	1.2	2

Olga P Verkhoglyadova

#	Article	IF	CITATIONS
109	Anomalous diffusion of energetic particles: implications for diffusive particle acceleration at a quasi-perpendicular shock. AlP Conference Proceedings, 2005, , .	0.3	0
110	Anomalous and classical diffusion of cosmic rays due to nonlinear two-dimensional structures and random magnetic fields. Journal of Geophysical Research, 2005, 110, .	3.3	8
111	Cosmic ray transport in a vortex flow. AIP Conference Proceedings, 2004, , .	0.3	2
112	Particle Diffusion on Vortices in Nearly Incompressible Magnetohydrodynamics. Astrophysical Journal, 2004, 602, 1002-1005.	1.6	5
113	Model for vortex turbulence with discontinuities in the solar wind. Nonlinear Processes in Geophysics, 2003, 10, 335-343.	0.6	9
114	Paraboloidal model for formation of plasma envelopes and ray structures in the cometary ionosphere. Planetary and Space Science, 1996, 44, 407-416.	0.9	0
115	Three-dimensional model of ray structure formation in cometary plasma tails. Planetary and Space Science, 1994, 42, 733-736.	0.9	1
116	Interplanetary Causes of Middle Latitude Ionospheric Disturbances. Geophysical Monograph Series, 0, , 99-119.	0.1	6
117	Simulation of PPEF Effects in Dayside Low-Latitude Ionosphere for the October 30, 2003, Superstorm. Geophysical Monograph Series, 0, , 169-177.	0.1	15