List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic transition and magnetocaloric effect of R5(Si, Sn)3 (R = Pr, Nd) alloys. Solid State Communications, 2022, 342, 114593.	1.9	1
2	Magnetostriction and heat-capacity study on the metamagnetic phase transition of Dy ₂ In _{1-x} Al _x alloys. AIP Advances, 2022, 12, 035236.	1.3	0

Synthesis and characterizations of solid-solution i-MAX phase (W1/3Mo1/3R1/3)2AlC (RÂ=ÂGd, Tb, Dy, Ho,) Tj ETQq1 1 0.784314 rgB 3 213 114596

The crystal structure, magnetic phase transition and magnetocaloric effect in R5CoSb2 (R = Pr, Nd,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

4		3.9	4
5	Fe3+-stabilized Ti3C2T MXene enables ultrastable Li-ion storage at low temperature. Journal of Materials Science and Technology, 2021, 67, 156-164.	10.7	41
6	Enhanced magnetocaloric effects in hetero-structural alloyed Er2In1-xAlx (0Ââ‰ÂxÂâ‰Â0.4) system by novel nonhysteretic metamagnetsm. Scripta Materialia, 2021, 194, 113649.	5.2	11
7	Enhanced magnetocaloric effects in Gd2In1â^'xAlx (0.4Ââ‰ÂxÂâ‰Â1) system by the hysteresis-free metamagnetism. Journal of Magnetism and Magnetic Materials, 2021, 524, 167648.	2.3	13
8	Magnetic Properties and Microstructures of Fe-Doped (Ti1-xFex)3AlC2 MAX Phase and Their MXene Derivatives. Journal of Superconductivity and Novel Magnetism, 2021, 34, 1477-1483.	1.8	3
9	Structural, magnetic properties of in-plane chemically ordered (Mo2/3R)2AlC (RÂ= Gd, Tb, Dy, Ho, Er and) Tj ETQq	110.784 10.3	13]4 rgBT
10	The Effects of Ga Substitution on Magnetocaloric Effects of the R2Al1-xGax (R = Gd, Er) phases. Journal of Superconductivity and Novel Magnetism, 2021, 34, 2977-2982.	1.8	0
11	Unveiling the SEI layer formed on pillar-structured MXene anode towards enhanced Li-ion storage. Scripta Materialia, 2021, 202, 113988.	5.2	8
12	Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (RÂ= Gd, Tb, Dy, Ho, Er, Tm and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon, 2021, 183, 76-83.	10.3	20
13	Regulating Fe–O bond in Ti3C2Tx MXene anode for high-capacity Li-ion batteries. Chemical Engineering Journal, 2021, 422, 130018.	12.7	22
14	Nonhysteretic metamagnetic phase transition in Ho2In1-xAlx (0Ââ‰ÂxÂâ‰Â0.4) by hetero-structural alloying. Journal of Magnetism and Magnetic Materials, 2021, 538, 168305.	2.3	3
15	Large Negative Thermal Expansion and Magnetoelastic Coupling in Metamagnetic Tetragonal (Mn, T)2Sb (T = Cr, V) Alloys. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2551-2555.	1.8	3
16	Interstitial Effects on the Magnetic Phase Transition and Magnetocaloric Effects in (Hf, Ta)Fe2 Kagome Phase. Journal of Superconductivity and Novel Magnetism, 2020, 33, 3211-3215.	1.8	2
17	Magnetic transition and magnetocaloric effect of Gd4Sb3-xRx (R=Si, Ge, Sn, 0 ≤ ≤0.75) compounds. AlP Advances, 2019, 9, 035206.	1.3	2
18	The effects of Ge occupation and hydrostatic pressure on the metamagnetic phase transition and magnetocaloric effect in Mn2Sb alloy. AIP Advances, 2019, 9, 035106.	1.3	4

#	Article	IF	CITATIONS
19	The enhanced magnetocaloric effect in Dy2In1â^'Al by a non-hysteresis metamagnetic phase transition. Scripta Materialia, 2019, 167, 37-40.	5.2	16
20	Interstitial effects of B and Li on the magnetic phase transition and magnetocaloric effects in Gd2In alloy. AIP Advances, 2018, 8, 056406.	1.3	5
21	Lattice distortion tuning of the metamagnetic phase transition in tetragonal Cu2Sb-type Mn1.95V0.05Sb alloy. Scripta Materialia, 2018, 143, 59-62.	5.2	17
22	Coercivity enhancement and microstructural optimization in diffusion-processed Ce-Nd-Fe-B-based films. Thin Solid Films, 2018, 645, 1-4.	1.8	7
23	Microstructure evolution and coercivity enhancement in Nd-Fe-B thin films diffusion-processed by R-Al alloys (R=Nd, Pr). AIP Advances, 2018, 8, 056202.	1.3	3
24	Distinct magnetic responses under hydrostatic pressure in Mn-Ga phase with variant crystallographic structure. Intermetallics, 2018, 102, 72-77.	3.9	1
25	Pressure-enhanced magnetocaloric effects in Mn2Sb1-xSnx system with uniaxial magnetocrystalline anisotropy. Journal of Alloys and Compounds, 2018, 769, 250-256.	5.5	1
26	Ultrahigh coercivity and core–shell microstructure achieved in oriented Nd–Fe–B thin films diffusion-processed with Dy-based alloys. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	5
27	Enhanced coercivity and grain boundary chemistry in diffusion-processed Ce13Fe79B8 ribbons. Materials Letters, 2017, 191, 210-213.	2.6	15
28	High coercivity and squareness realized in polycrystalline AlN-buffered Cu-doped Sm-Co thin films with perpendicular anisotropy. Journal of Alloys and Compounds, 2017, 729, 533-537.	5.5	2
29	Effects of B4C Addition on the Microstructure and Magnetic Properties of FePt-C Granular Thin Films for Perpendicular Magnetic Recording. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	4
30	Interstitial effects of B addition on the metamagnetic transition and magnetocaloric effect in tetragonal Cu 2 Sb-type Mn 1.95 Cu 0.05 Sb alloys. Intermetallics, 2017, 90, 50-53.	3.9	7
31	Manipulating the magnetic properties and interphase coupling in FePt/Pt/Fe multilayer films by Pt spacer layer. Journal Physics D: Applied Physics, 2017, 50, 495001.	2.8	1
32	Pronounced effects of high-magnetic-field solidification on metamagnetic transition in tetragonal Cu2Sb-type Mn1.8Cu0.2Sb alloy. Journal of Magnetism and Magnetic Materials, 2017, 442, 67-71.	2.3	10
33	Enhanced coercivity thermal stability realized in Nd–Fe–B thin films diffusion-processed by Nd–Co alloys. Journal of Magnetism and Magnetic Materials, 2017, 426, 550-553.	2.3	2
34	Origins analysis of coercivity enhancement mechanism in diffusion-processed Nd-Fe-B magnets. Journal of Alloys and Compounds, 2016, 686, 101-105.	5.5	14
35	Microstructure and magnetic properties of FePt–TiC–C granular thin films for perpendicular recording. Solid State Communications, 2014, 182, 17-21.	1.9	12
36	Nd ₂ Fe ₁₄ B/FeCo Anisotropic Nanocomposite Films with a Large Maximum Energy Product. Advanced Materials, 2012, 24, 6530-6535.	21.0	150

#	Article	IF	CITATIONS
37	Quasilogarithmic magnetic viscosity in perpendicularly anisotropic Nd–Fe–B films. Journal of Magnetism and Magnetic Materials, 2012, 324, 2854-2857.	2.3	0
38	Microstructure optimization to achieve high coercivity in anisotropic Nd–Fe–B thin films. Acta Materialia, 2011, 59, 7768-7775.	7.9	95
39	Ordering temperature of L10-type FePt films reduced by CuO addition. Journal of Magnetism and Magnetic Materials, 2010, 322, 2027-2030.	2.3	5
40	Carbon-doping effects on the metamagnetic transition and magnetocaloric effect in MnAsCx. Journal of Magnetism and Magnetic Materials, 2010, 322, 2223-2226.	2.3	14
41	The origin of large overestimation of the magnetic entropy changes calculated directly by Maxwell relation. Applied Physics Letters, 2010, 96, .	3.3	35
42	Magnetic properties and spin-glass-like behavior in stoichiometric Mn3In compound. Journal of Applied Physics, 2009, 106, .	2.5	15
43	Temperature dependence of competition between interlayer and interfacial exchange couplings in ferromagnetic/antiferromagnetic/ferromagnetic trilayers. Applied Physics Letters, 2009, 95, .	3.3	18
44	Growth mechanism and magnetic properties for the out-of-plane–oriented Nd–Fe–B films. Journal of Materials Research, 2009, 24, 2802-2812.	2.6	6
45	Beneficial effect of minor Al substitution on the magnetocaloric effect of Mn1â^'xAlxAs. Materials Letters, 2009, 63, 595-597.	2.6	15
46	Structure and magnetic properties of high coercive [PrFeB /Cu] films with out-of-plane orientation. Materials Letters, 2009, 63, 1866-1868.	2.6	11
47	Hydrothermal Synthesis of Three-Dimensional Hierarchical CuO Butterfly-Like Architectures. European Journal of Inorganic Chemistry, 2009, 2009, 168-173.	2.0	34
48	Microwave absorption properties of FCC-Co/Al2O3 and FCC-Co/Y2O3 nanocapsules. Solid State Communications, 2009, 149, 64-67.	1.9	28
49	Spin-glass behavior and magnetocaloric effect in Tb-based bulk metallic glass. Journal of Magnetism and Magnetic Materials, 2009, 321, 413-417.	2.3	48
50	Magnetic properties of Pr–Fe–B/Mn films with perpendicular anisotropy. Journal of Magnetism and Magnetic Materials, 2009, 321, 1068-1071.	2.3	16
51	Cooling-field dependence of exchange bias in Mg-diluted Ni1â^'xMgxO/Ni granular systems. Journal of Magnetism and Magnetic Materials, 2009, 321, 1943-1946.	2.3	15
52	(Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon, 2009, 47, 470-474.	10.3	316
53	Effect of Co and Dy substitutions on the structure and magnetic properties of Nd–Fe–C alloys prepared by a re-milling process. Journal of Alloys and Compounds, 2009, 468, L33-L36.	5.5	3
54	Exchange bias and phase transformation in α-Fe2O3/Fe3O4 nanocomposites. Journal of Alloys and Compounds, 2009, 475, 42-45.	5.5	26

#	Article	IF	CITATIONS
55	Magnetocaloric effects and reduced thermal hysteresis in Si-doped MnAs compounds. Journal of Alloys and Compounds, 2009, 479, 189-192.	5.5	25
56	Thickness dependence of the magnetic properties of high-coercive Pr–Fe–B thin films with perpendicular magnetic anisotropy. Physica B: Condensed Matter, 2008, 403, 3631-3634.	2.7	16
57	Large cryogenic magnetocaloric effect of DyCo2 nanoparticles without encapsulation. Applied Physics Letters, 2008, 92, .	3.3	28
58	Exchange bias and phase transformation in αâ€Fe2O3+NiO nanocomposites. Journal of Applied Physics, 2008, 103, 103906.	2.5	17
59	Exchange bias in antiferromagnetic coupled Fe ₃ O ₄ +Cr ₂ O ₃ nanocomposites. Journal Physics D: Applied Physics, 2008, 41, 105005.	2.8	19
60	Structure, magnetic properties and coercivity mechanism of the Mo-spacered Nd ₂ Fe ₁₄ B/α-Fe textured multilayer films. Journal Physics D: Applied Physics, 2008, 41, 245007.	2.8	12
61	Giant reversible magnetocaloric effect in cobalt hydroxide nanoparticles. Applied Physics Letters, 2008, 93, .	3.3	25
62	Magnetic properties and enhanced magnetic refrigeration in (Mn1â^'xFex)5Ge3 compounds. Journal of Applied Physics, 2007, 101, 123911.	2.5	38
63	Enhanced coercivity in Nd–Fe–C alloys prepared by a re-milling process. Journal of Alloys and Compounds, 2007, 436, 392-395.	5.5	10
64	Phase formation and magnetic properties of Nd2Fe14B-type Nd16Co76B8â^'xCx alloys and their hydrides. Physica B: Condensed Matter, 2007, 400, 273-277.	2.7	2