Henriette Monteiro Cordeiro de Azered

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843244/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocomposites for food packaging applications. Food Research International, 2009, 42, 1240-1253.	2.9	1,009
2	Betalains: properties, sources, applications, and stability – a review. International Journal of Food Science and Technology, 2009, 44, 2365-2376.	1.3	475
3	Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 2017, 97, 664-671.	2.5	406
4	Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1151-1169.	5.9	359
5	Nanocomposite Edible Films from Mango Puree Reinforced with Cellulose Nanofibers. Journal of Food Science, 2009, 74, N31-5.	1.5	327
6	Nanocellulose Reinforced Chitosan Composite Films as Affected by Nanofiller Loading and Plasticizer Content. Journal of Food Science, 2010, 75, N1-7.	1.5	319
7	Antimicrobial nanostructures in food packaging. Trends in Food Science and Technology, 2013, 30, 56-69.	7.8	291
8	Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	286
9	Crosslinking in polysaccharide and protein films and coatings for food contact – A review. Trends in Food Science and Technology, 2016, 52, 109-122.	7.8	280
10	Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry, 2018, 20, 2428-2448.	4.6	228
11	Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, 2016, 198, 113-118.	4.2	193
12	Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 2016, 88, 373-379.	3.6	174
13	Probiotics and their potential applications in active edible films and coatings. Food Research International, 2016, 90, 42-52.	2.9	150
14	Development and characterization of edible films from mixtures ofÂκ-carrageenan, ι-carrageenan, and alginate. Food Hydrocolloids, 2015, 47, 140-145.	5.6	118
15	Physical properties of spray dried acerola pomace extract as affected by temperature and drying aids. LWT - Food Science and Technology, 2009, 42, 641-645.	2.5	113
16	Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydrate Polymers, 2019, 211, 209-216.	5.1	94
17	Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydrate Polymers, 2018, 196, 27-32.	5.1	91
18	Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT - Food Science and Technology, 2012, 46, 294-297.	2.5	89

HENRIETTE MONTEIRO

#	Article	IF	CITATIONS
19	Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties. Carbohydrate Polymers, 2017, 164, 317-324.	5.1	87
20	Nanoreinforced alginate–acerola puree coatings on acerola fruits. Journal of Food Engineering, 2012, 113, 505-510.	2.7	86
21	Fish gelatin films as affected by cellulose whiskers and sonication. Food Hydrocolloids, 2014, 41, 113-118.	5.6	84
22	Wheat straw hemicellulose films as affected by citric acid. Food Hydrocolloids, 2015, 50, 1-6.	5.6	80
23	Development of pectin films with pomegranate juice and citric acid. Food Chemistry, 2016, 198, 101-106.	4.2	80
24	Influence of cassava starch and carnauba wax on physical properties of cashew tree gum-based films. Food Hydrocolloids, 2014, 38, 147-151.	5.6	72
25	Food packaging wastes amid the COVID-19 pandemic: Trends and challenges. Trends in Food Science and Technology, 2021, 116, 1195-1199.	7.8	64
26	Effect of drying and storage time on the physico-chemical properties of mango leathers. International Journal of Food Science and Technology, 2006, 41, 635-638.	1.3	59
27	Effect of Tannic Acid and Cellulose Nanocrystals on Antioxidant and Antimicrobial Properties of Gelatin Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 8539-8549.	3.2	57
28	Addition of cashew tree gum to maltodextrinâ€based carriers for spray drying of cashew apple juice. International Journal of Food Science and Technology, 2009, 44, 641-645.	1.3	54
29	Betacyanin Stability During Processing and Storage of a Microencapsulated Red Beetroot Extract. American Journal of Food Technology, 2007, 2, 307-312.	0.2	54
30	New approach in the development of edible films: The use of carnauba wax micro- or nanoemulsions in arrowroot starch-based films. Food Packaging and Shelf Life, 2020, 26, 100589.	3.3	52
31	Pomegranate peel pectin films as affected by montmorillonite. Food Chemistry, 2016, 198, 107-112.	4.2	50
32	Enhancing storage stability of guava with tannic acid-crosslinked zein coatings. Food Chemistry, 2018, 257, 252-258.	4.2	50
33	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
34	Antioxidant films from mango kernel components. Food Hydrocolloids, 2019, 95, 487-495.	5.6	49
35	Nanostructured Antimicrobials in Food Packaging—Recent Advances. Biotechnology Journal, 2019, 14, e1900068.	1.8	46
36	Avaliação da atividade antioxidante dos compostos fenólicos naturalmente presentes em subprodutos do pseudofruto de caju (Anacardium occidentale L.). Food Science and Technology, 2007, 27, 902-908.	0.8	45

#	Article	IF	CITATIONS
37	Bionanocomposite films based on polysaccharides from banana peels. International Journal of Biological Macromolecules, 2017, 101, 1-8.	3.6	45
38	Starch-cashew tree gum nanocomposite films and their application for coating cashew nuts. LWT - Food Science and Technology, 2015, 62, 549-554.	2.5	43
39	Mesquite seed gum and palm fruit oil emulsion edible films: Influence of oil content and sonication. Food Hydrocolloids, 2016, 56, 227-235.	5.6	43
40	From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. International Journal of Biological Macromolecules, 2020, 161, 1337-1345.	3.6	43
41	Stabilizing effect of montmorillonite on acerola juice anthocyanins. Food Chemistry, 2018, 245, 966-973.	4.2	41
42	Nanocomposite Films from Mango Kernel or Corn Starch with Starch Nanocrystals. Starch/Staerke, 2018, 70, 1800028.	1.1	39
43	Emulsion films from tamarind kernel xyloglucan and sesame seed oil by different emulsification techniques. Food Hydrocolloids, 2018, 77, 270-276.	5.6	37
44	Nanocomposites in Food Packaging $\hat{a} \in A$ Review. , 0, , .		37
45	Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: a new functional material for food packaging applications. Cellulose, 2021, 28, 6499-6511.	2.4	36
46	From mango by-product to food packaging: Pectin-phenolic antioxidant films from mango peels. International Journal of Biological Macromolecules, 2021, 193, 1138-1150.	3.6	36
47	Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. Journal of Food Measurement and Characterization, 2021, 15, 1815-1825.	1.6	35
48	Bacterial cellulose/cashew gum films as probiotic carriers. LWT - Food Science and Technology, 2020, 130, 109699.	2.5	34
49	Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham Industrial Crops and Products, 2016, 86, 279-288.	2.5	33
50	Pulp and Jam of Gabiroba (Campomanesia xanthocarpa Berg): Characterization and Rheological Properties. Food Chemistry, 2018, 263, 292-299.	4.2	33
51	Study on efficiency of betacyanin extraction from red beetroots. International Journal of Food Science and Technology, 2009, 44, 2464-2469.	1.3	31
52	Physical properties of cassava starch–carnauba wax emulsion films as affected by component proportions. International Journal of Food Science and Technology, 2014, 49, 2045-2051.	1.3	31
53	The use of biomass for packaging films and coatings. , 2014, , 819-874.		27
54	Tensile and water vapour properties of calciumâ€crosslinked alginateâ€cashew tree gum films. International Journal of Food Science and Technology, 2012, 47, 710-715.	1.3	26

#	Article	IF	CITATIONS
55	Smart choices: Mechanisms of intelligent food packaging. Current Research in Food Science, 2021, 4, 932-936.	2.7	26
56	Zein films with unoxidized or oxidized tannic acid. Journal of the Science of Food and Agriculture, 2017, 97, 4580-4587.	1.7	24
57	TEMPO oxidation and high-speed blending as a combined approach to disassemble bacterial cellulose. Cellulose, 2019, 26, 2291-2302.	2.4	24
58	Edible Coatings. Contemporary Food Engineering, 2012, , 345-362.	0.2	24
59	Minimization of peroxide formation rate in soybean oil by antioxidant combinations. Food Research International, 2004, 37, 689-694.	2.9	23
60	Polysaccharides from Caesalpinia ferrea seeds – Chemical characterization and anti-diabetic effects in Wistar rats. Food Hydrocolloids, 2017, 65, 68-76.	5.6	22
61	Corn starch based films treated by dielectric barrier discharge plasma. International Journal of Biological Macromolecules, 2021, 183, 2009-2016.	3.6	22
62	Goma de cajueiro (Anacardium occidentale): avaliação das modificações quÃmicas e fÃsicas por extrusão termoplástica. Polimeros, 2013, 23, 667-671.	0.2	21
63	Advantages and challenges of Pickering emulsions applied to <scp>bioâ€based</scp> films: a <scp>miniâ€review</scp> . Journal of the Science of Food and Agriculture, 2021, 101, 3535-3540.	1.7	21
64	All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packaging and Shelf Life, 2021, 29, 100715.	3.3	21
65	ASCORBIC ACID AND ANTHOCYANIN RETENTION DURING SPRAY DRYING OF ACEROLA POMACE EXTRACT. Journal of Food Processing and Preservation, 2010, 34, 915-925.	0.9	19
66	Embalagens ativas para alimentos. Food Science and Technology, 2000, 20, 337-341.	0.8	19
67	Montmorillonite as a reinforcement and color stabilizer of gelatin films containing acerola juice. Applied Clay Science, 2018, 165, 1-7.	2.6	18
68	Dehydrated strawberries for probiotic delivery: Influence of dehydration and probiotic incorporation methods. LWT - Food Science and Technology, 2021, 144, 111105.	2.5	18
69	Antioxidant films and coatings based on starch and phenolics from Spondias purpurea L International Journal of Biological Macromolecules, 2021, 182, 354-365.	3.6	18
70	Storage stability of a tropical fruit (cashew apple, acerola, papaya, guava and passion fruit) mixed nectar added caffeine. International Journal of Food Science and Technology, 2010, 45, 2162-2166.	1.3	16
71	Designing healthier foods: Reducing the content or digestibility of key nutrients. Trends in Food Science and Technology, 2021, 118, 459-470.	7.8	15
72	Films from cashew byproducts: cashew gum and bacterial cellulose from cashew apple juice. Journal of Food Science and Technology, 2021, 58, 1979-1986.	1.4	12

#	Article	IF	CITATIONS
73	Desidratação osmótica de abacaxi aplicada à tecnologia de métodos combinados. Food Science and Technology, 2000, 20, 78-82.	0.8	11
74	Mixed tropical fruit nectars with added energy components. International Journal of Food Science and Technology, 2007, 42, 1290-1296.	1.3	10
75	Integrating life cycle assessment in early process development stage: The case of extracting starch from mango kernel. Journal of Cleaner Production, 2021, 321, 128981.	4.6	8
76	Something to chew on: technological aspects for novel snacks. Journal of the Science of Food and Agriculture, 2022, 102, 2191-2198.	1.7	7
77	Propriedades antioxidantes em subproduto do pedúnculo de caju (Anacardium occidentale L.): efeito sobre a lipoperoxidação e o perfil de ácidos graxos poliinsaturados em ratos. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2008, 44, 773-781.	0.5	6
78	Antimicrobial Activity of Nanomaterials for Food Packaging Applications. , 2012, , 375-394.		6
79	In a nutshell: prospects and challenges on coatings for edible kernels. Journal of the Science of Food and Agriculture, 2020, 100, 2321-2326.	1.7	6
80	Ultraprocessed Foods: Bad Nutrition or Bad Definition?. ACS Food Science & Technology, 2022, 2, 613-615.	1.3	6
81	Lignocellulosic-Based Nanostructures and Their Use in Food Packaging. , 2018, , 47-69.		5
82	Residual Starch Packaging Derived from Potato Washing Slurries to Preserve Fruits. Food and Bioprocess Technology, 2021, 14, 2248-2259.	2.6	5
83	Stability of mango cubes preserved by hurdle technology. Ciencia E Agrotecnologia, 2005, 29, 377-381.	1.5	4
84	Microfluidizer Technique for Improving Microfiber Properties Incorporated Into Edible and Biodegradable Films. , 2012, , .		4
85	Mesquite seed gum and Nile tilapia fish gelatin composite films with cellulose nanocrystals. Pesquisa Agropecuaria Brasileira, 2018, 53, 495-503.	0.9	4
86	Influence of Brazilian pine seed flour addition on rheological, chemical and sensory properties of gluten-free rice flour cakes. Ciencia Rural, 2018, 48, .	0.3	4
87	Essential Oils as Natural Fungicides to Control Rhizopus stolonifer-Induced Spoiled of Strawberries. Biointerface Research in Applied Chemistry, 2021, 11, 13244-13251.	1.0	4
88	Bacterial cellulose for food applications. International Journal of Advances in Medical Biotechnology - IJAMB, 2018, 1, 2.	0.1	4
89	Progress in Organosolv and Steam Explosion Pretreatments of Oil Palm Fibers for Biomacromolecules Extraction. Journal of Natural Fibers, 2022, 19, 10708-10722.	1.7	4
90	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues (Adv. Mater. 43/2021). Advanced Materials, 2021, 33, 2170342.	11.1	3

HENRIETTE MONTEIRO

#	Article	IF	CITATIONS
91	Banana leathers as influenced by polysaccharide matrix and probiotic bacteria. Food Hydrocolloids for Health, 2022, 2, 100081.	1.6	3
92	PELÃCULAS COMESTÃVEIS EM FRUTAS CONSERVADAS POR MÉTODOS COMBINADOS: POTENCIAL DA APLICAÇÃO. Boletim Centro De Pesquisa De Processamento De Alimentos, 2003, 21, .	0.2	2
93	USE OF MIXTURE DESIGN TO IMPROVE A TROPICAL MIXED FRUIT NECTAR. Boletim Centro De Pesquisa De Processamento De Alimentos, 2014, 32, .	0.2	2
94	AVALIAÇÃO DO IMPACTO DE PRÉ-TRATAMENTOS SOBRE A EXTRAÇÃO DE CAROTENÓIDES POR PRENSA SEQÜENCIAL DE BAGAÇO DE CAJU. Boletim Centro De Pesquisa De Processamento De Alimentos, 2006, 24,	GEM 0.2	0