Wilfred T Tysoe

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6843234/wilfred-t-tysoe-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 126
 2,356
 28
 41

 papers
 citations
 h-index
 g-index

 132
 2,563
 4.6
 5.26

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
126	Reflection absorption infrared spectroscopy of the surface chemistry of furfural on Pd(111). <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2022 , 40, 013203	2.9	O
125	Influence of the Nature and Orientation of the Terminal Group on the Tribochemical Reaction Rates of Carboxylic Acid Monolayers on Copper. <i>Tribology Letters</i> , 2022 , 70, 1	2.8	O
124	Adsorption Structure and Reactivity of a Putative Asymmetric Molecular Conductor; 4-Isocyanophenyl Disulfide on Au(111). <i>Journal of Physical Chemistry C</i> , 2022 , 126, 6601-6611	3.8	O
123	Prandtllomlinson-Type Models for Coupled Molecular Sliding Friction: Chain-Length Dependence of Friction of Self-assembled Monolayers. <i>Tribology Letters</i> , 2022 , 70, 1	2.8	
122	Prandtlllomlinson-Type Models for Molecular Sliding Friction. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	1
121	Binding of Oxygen on Single-Atom Sites on Au/Pd(100) Alloys with High Gold Coverages. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 9715-9729	3.8	1
120	Surface Chemistry at the Solid-Solid Interface; Selectivity and Activity in Mechanochemical Reactions on Surfaces. <i>Chemistry Methods</i> , 2021 , 1, 340-349		1
119	Influence of the terminal group on the thermal decomposition reactions of carboxylic acids on copper: nature of the carbonaceous film. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 17663-17671	3.6	3
118	Surface chemistry at the solid-solid interface: mechanically induced reaction pathways of C carboxylic acid monolayers on copper. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 17803-17812	3.6	2
117	Insights into the Mechanism of the Mechanochemical Formation of Metastable Phases. <i>ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	5
116	Inducing High-Energy-Barrier Tribochemical Reaction Pathways; Acetic Acid Decomposition on Copper. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	7
115	Structure and reaction pathways of octanoic acid on copper. Surface Science, 2021, 711, 121875	1.8	5
114	Adsorption and reaction pathways of 7-octenoic acid on copper. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 5834-5844	3.6	6
113	Infrared spectroscopic measurements of the structure of organic thin films; furfural on Pd(111) and Au(111) surfaces. <i>CrystEngComm</i> , 2021 , 23, 4534-4548	3.3	2
112	Mechanism of the Accelerated Water Formation Reaction under Interfacial Confinement. <i>ACS Catalysis</i> , 2020 , 10, 6119-6128	13.1	9
111	Measuring and modelling mechanochemical reaction kinetics. <i>Chemical Communications</i> , 2020 , 56, 7730)-₹.833	15
110	The reactivity, selectivity and structure of 2-butanol on clean and oxygen-covered Au/Pd(100) alloys. <i>Surface Science</i> , 2020 , 694, 121556	1.8	

(2017-2020)

109	Adsorption and Reaction of Trimethyl and Triethyl Phosphite on Fe3O4 by Density Functional Theory. <i>Tribology Letters</i> , 2020 , 68, 1	2.8	
108	Surface structure of 1,4-benzenedithiol on Au(111). Surface Science, 2020, 702, 121717	1.8	4
107	Chemical Self-Assembly Strategies for Designing Molecular Electronic Circuits: Demonstration of Concept. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 10398-10405	3.8	2
106	Tribochemical Mechanisms of Trimethyl and Triethyl Phosphite on Oxidized Iron in Ultrahigh Vacuum. <i>Tribology Letters</i> , 2019 , 67, 1	2.8	5
105	Chemical self-assembly strategies for designing molecular electronic circuits. <i>Chemical Communications</i> , 2019 , 55, 13872-13875	5.8	5
104	The structure of alanine anionic-zwitterionic dimers on Pd(111); formation of salt bridges. <i>Surface Science</i> , 2019 , 679, 79-85	1.8	1
103	Combining IR Spectroscopy and Monte Carlo Simulations to Identify CO Adsorption Sites on Bimetallic Alloys. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 8406-8420	3.8	8
102	Adsorption and Structure of Chiral Epoxides on Pd(111): Propylene Oxide and Glycidol. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1215-1222	3.8	1
101	Effect of Coverage on Catalytic Selectivity and Activity on Metallic and Alloy Catalysts; Vinyl Acetate Monomer Synthesis. <i>Topics in Catalysis</i> , 2018 , 61, 722-735	2.3	3
100	Characterization of the Tribological Behavior of the Textured Steel Surfaces Fabricated by Photolithographic Etching. <i>Tribology Letters</i> , 2018 , 66, 1	2.8	17
99	Development of a ReaxFF Force Field for Cu/S/C/H and Reactive MD Simulations of Methyl Thiolate Decomposition on Cu (100). <i>Journal of Physical Chemistry B</i> , 2018 , 122, 888-896	3.4	14
98	In-Situ Measurement of Tribochemical Processes in Ultrahigh Vacuum. <i>Microtechnology and MEMS</i> , 2018 , 129-158	0.6	
97	Vinyl Acetate Formation on Au/Pd(100) Alloy Surfaces. <i>Catalysis Letters</i> , 2018 , 148, 79-89	2.8	1
96	Spontaneous self-assembly of conductive molecular linkages between gold nanoelectrodes from aryl diisocyanides. <i>Applied Physics A: Materials Science and Processing</i> , 2018 , 124, 1	2.6	3
95	Adsorption, Assembly, and Oligomerization of Aspartic Acid on Pd(111). <i>Journal of Physical Chemistry C</i> , 2017 , 121, 13239-13248	3.8	3
94	Kinetics and Mechanism of Vinyl Acetate Monomer Synthesis on Pd(100) Model Catalysts. <i>Catalysis Letters</i> , 2017 , 147, 1941-1954	2.8	2
93	Modeling Mechanochemical Reaction Mechanisms. ACS Applied Materials & amp; Interfaces, 2017, 9, 26,	53g. 3 6	53 8 5
92	On Stress-Induced Tribochemical Reaction Rates. <i>Tribology Letters</i> , 2017 , 65, 1	2.8	36

91	Enhanced hydrogenation activity and diastereomeric interactions of methyl pyruvate co-adsorbed with R-1-(1-naphthyl)ethylamine on Pd(111). <i>Nature Communications</i> , 2016 , 7, 12380	17.4	27
90	Surface chemistry and structures of 1,4-phenylene diisocyanide on gold films from solution. <i>Surface Science</i> , 2016 , 649, 56-59	1.8	7
89	Identification of the Shear Plane During Sliding of Solid Boundary Films: Potassium Chloride Films on Iron. <i>Tribology Letters</i> , 2016 , 62, 1	2.8	1
88	In Situ Measurements of Boundary Film Formation Pathways and Kinetics: Dimethyl and Diethyl Disulfide on Copper. <i>Tribology Letters</i> , 2016 , 62, 1	2.8	20
87	Kinetics of low-temperature CO oxidation on Au(111). Surface Science, 2016, 648, 236-241	1.8	4
86	The adsorption of ethylene on Au/Pd(100) alloy surfaces. Surface Science, 2016, 646, 65-71	1.8	5
85	Adsorption and Oligomerization of 1,3-Phenylene Diisocyanide on Au(111). <i>Journal of Physical Chemistry C</i> , 2016 , 120, 9270-9275	3.8	5
84	Local and Extended Structures of d-(I) Tartaric Acid on Pd(111). <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2309-2319	3.8	6
83	Pressure dependence of the interfacial structure of potassium chloride films on iron. <i>Thin Solid Films</i> , 2015 , 593, 150-157	2.2	3
82	Self-Assembled Oligomeric Structures from 1,4-Benzenedithiol on Au(111) and the Formation of Conductive Linkers between Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 23042-2305	5 3 .8	17
81	Influence of Potential Shape on Constant-Force Atomic-Scale Sliding Friction Models. <i>Tribology Letters</i> , 2015 , 60, 1	2.8	12
80	Structural Changes in Self-Catalyzed Adsorption of Carbon Monoxide on 1,4-Phenylene Diisocyanide Modified Au(111). <i>Journal of Physical Chemistry C</i> , 2015 , 119, 18317-18325	3.8	9
79	Shear-Induced Mechanochemistry: Pushing Molecules Around. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 7115-7123	3.8	48
78	Chemisorptive enantioselectivity of chiral epoxides on tartaric-acid modified Pd(111): three-point bonding. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5450-8	3.6	9
77	On the Commonality Between Theoretical Models for Fluid and Solid Friction, Wear and Tribochemistry. <i>Tribology Letters</i> , 2015 , 59, 1	2.8	79
76	Formation of Induced-Fit Chiral Templates by Amino Acid-Functionalized Pd(111) Surfaces. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 3556-3563	3.8	11
75	Adsorption and reaction pathways of a chiral probe molecule, S-glycidol on a Pd(111) surface. <i>Catalysis Science and Technology</i> , 2015 , 5, 738-742	5.5	6
74	Surface Chemistry for Enantioselective Catalysis. <i>Catalysis Letters</i> , 2015 , 145, 220-232	2.8	71

73	Disentangling ensemble, electronic and coverage effects on alloy catalysts: Vinyl acetate synthesis on Au/Pd(111). <i>Journal of Catalysis</i> , 2014 , 312, 37-45	7.3	24	
72	Formation of Chiral Self-Assembled Structures of Amino Acids on Transition-Metal Surfaces: Alanine on Pd(111). <i>Journal of Physical Chemistry C</i> , 2014 , 118, 6856-6865	3.8	25	
71	Shear and thermal effects in boundary film formation during sliding. RSC Advances, 2014, 4, 24059-2400	6 6 .7	16	
70	Understanding and Controlling the 1,4-Phenylene Diisocyanide L old Oligomer Formation Pathways. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 20899-20907	3.8	17	
69	Determination of Adsorbate Structures from 1,4-Phenylene Diisocyanide on Gold. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3577-81	6.4	17	
68	Temperature Dependences in the Tomlinson/Prandtl Model for Atomic Sliding Friction. <i>Tribology Letters</i> , 2014 , 55, 363-369	2.8	8	
67	Structure and decomposition pathways of D-(Ill tartaric acid on Pd(111). Surface Science, 2014, 629, 132-	13.8	10	
66	Reactivity and Selectivity in the Au/Pd(111) Alloy-Catalyzed Vinyl Acetate Synthesis. <i>Catalysis Letters</i> , 2013 , 143, 756-762	2.8	9	
65	Mechanistic Insights in the Catalytic Synthesis of Vinyl Acetate on Palladium and Gold/Palladium Alloy Surfaces. <i>Topics in Catalysis</i> , 2013 , 56, 1314-1332	2.3	23	
64	Tribological Properties of 1-Alkenes on Copper Foils: Effect of Low-Coordination Surface Sites. <i>Tribology Letters</i> , 2013 , 51, 357-363	2.8	3	
63	Pressure Dependence of the Shear Strengths of the Tungsten Carbide Potassium Chloride Interface. <i>Tribology Letters</i> , 2013 , 50, 105-113	2.8	2	
62	The desorption and reaction of 1-alkenes and 1-alkynes on Cu(111) and copper foils. <i>Surface Science</i> , 2013 , 616, 143-148	1.8	7	
61	Linking gold nanoparticles with conductive 1,4-phenylene diisocyanide-gold oligomers. <i>Chemical Communications</i> , 2013 , 49, 1422-4	5.8	24	
60	Relating Molecular Structure to Tribological Chemistry: Borate Esters on Copper. <i>Tribology Letters</i> , 2013 , 49, 21-29	2.8	12	
59	The Kinetics of Shear-Induced Boundary Film Formation from Dimethyl Disulfide on Copper. <i>Tribology Letters</i> , 2013 , 49, 39-46	2.8	16	
58	Identifying Molecular Species on Surfaces by Scanning Tunneling Microscopy: Methyl Pyruvate on Pd(111). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4505-4514	3.8	12	
57	Shear-induced boundary film formation from dialkyl sulfides on copper. Wear, 2012, 274-275, 183-187	3.5	17	
56	On the film thickness dependence of shear strengths in sliding, boundary-layer friction. <i>Wear</i> , 2012 , 274-275, 281-285	3.5	4	

55	Structure of the Au/Pd(100) Alloy Surface. Journal of Physical Chemistry C, 2012, 116, 4692-4697	3.8	7
54	Surface chemistry of isopropoxy tetramethyl dioxaborolane on Cu(111). <i>Langmuir</i> , 2012 , 28, 6322-7	4	7
53	The adsorption and reaction of vinyl acetate on Au/Pd(100) alloy surfaces. <i>Surface Science</i> , 2012 , 606, 1113-1119	1.8	6
52	The adsorption of acetic acid on clean and oxygen-covered Au/Pd(100) alloy surfaces. <i>Surface Science</i> , 2012 , 606, 1934-1941	1.8	16
51	An Infrared Spectroscopic and Temperature-Programmed Desorption Study of 1,1-Difluoroethylene on Clean and Hydrogen-Covered Pd(111). <i>Adsorption Science and Technology</i> , 2011 , 29, 595-602	3.6	
50	Stabilization of Carboxylate Surface Species on Pd(111). <i>Adsorption Science and Technology</i> , 2011 , 29, 603-611	3.6	6
49	Reaction Between Ethylene and Acetate Species on Clean and Oxygen-Covered Pd(100): Implications for the Vinyl Acetate Monomer Formation Pathway. <i>Catalysis Letters</i> , 2011 , 141, 266-270	2.8	12
48	Creation of Low-Coordination Gold Sites on Au(111) Surface by 1,4-phenylene Diisocyanide Adsorption. <i>Topics in Catalysis</i> , 2011 , 54, 20-25	2.3	35
47	Shear-Induced Surface-to-Bulk Transport at Room Temperature in a Sliding Metal Metal Interface. <i>Tribology Letters</i> , 2011 , 41, 257-261	2.8	29
46	On the Pressure Dependence of Shear Strengths in Sliding, Boundary-Layer Friction. <i>Tribology Letters</i> , 2011 , 44, 67-73	2.8	13
45	Structure and Distribution of S-E(1-Naphthyl)-ethylamine on Pd(111). <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16488-16494	3.8	25
44	Low-temperature, shear-induced tribofilm formation from dimethyl disulfide on copper. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 1, 2, 795-800	9.5	35
43	Structure of Methyl Pyruvate and E(1-Naphthyl)ethylamine on Pd(111). <i>Journal of Physical Chemistry C</i> , 2011 , 115, 8790-8797	3.8	22
42	The surface chemistry of diethyl disulfide on copper. <i>Surface Science</i> , 2011 , 605, 606-611	1.8	8
41	Carbon Monoxide Oxidation over Au/Pd(100) Model Alloy Catalysts <i>Journal of Physical Chemistry C</i> , 2010 , 114, 16909-16916	3.8	32
40	Coverage effects on the palladium-catalyzed synthesis of vinyl acetate: comparison between theory and experiment. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2202-7	16.4	50
39	Identification of Adsorption Ensembles on Bimetallic Alloys. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1875-1880	3.8	15
38	The surface chemistry of dimethyl disulfide on copper. <i>Langmuir</i> , 2010 , 26, 16375-80	4	29

(2008-2010)

37	One-dimensional supramolecular surface structures: 1,4-diisocyanobenzene on Au(111) surfaces. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11624-9	3.6	44
36	Kinetic Parameters for the Elementary Steps in the Palladium-Catalyzed Synthesis of Vinyl Acetate. <i>Catalysis Letters</i> , 2010 , 138, 135-142	2.8	13
35	Monte Carlo Simulations for Tomlinson Sliding Models for Non-Sinusoidal Periodic Potentials. <i>Tribology Letters</i> , 2010 , 39, 177-180	2.8	18
34	Adsorption of carbon monoxide Au/Pd(100) alloys in ultrahigh vacuum: Identification of adsorption sites. <i>Surface Science</i> , 2010 , 604, 136-143	1.8	25
33	The adsorption and reaction of 2-butanol on clean and oxygen-covered Pd(100). <i>Surface Science</i> , 2010 , 604, 1377-1387	1.8	9
32	Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals 2010 , 1-28		
31	Structure and reaction pathways of methyl lactate on Pd(1 1 1). Surface Science, 2009, 603, 2714-2720	1.8	6
30	Enantioselective Chemisorption on Model Chirally Modified Surfaces: 2-Butanol on £(1-Naphthyl)ethylamine/Pd(111). <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13877-13885	3.8	31
29	Structure and Reaction Pathways of Methyl Pyruvate on Pd(111). <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15298-15306	3.8	12
28	Ethene Adsorption and Decomposition on the Cu(410) Surface. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20881-20889	3.8	18
27	Structure and Decomposition Pathways of Vinyl Acetate on Clean and Oxygen-Covered Pd(100). Journal of Physical Chemistry C, 2009 , 113, 971-978	3.8	16
26	A new method for performing polarization modulation infrared reflection-adsorption spectroscopy of surfaces. <i>Applied Spectroscopy</i> , 2009 , 63, 369-72	3.1	12
25	Kinetic Monte Carlo theory of sliding friction. <i>Physical Review B</i> , 2009 , 80,	3.3	23
24	Ethylene decomposition at undercoordinated sites on Cu(410). <i>Journal of the American Chemical Society</i> , 2008 , 130, 12552-3	16.4	33
23	Enantioselective Chemisorption and Reactions on Model Chirally Modified Surfaces: 2-Butanol on l-Proline Templated Pd(111) Surfaces. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6145-6150	3.8	24
22	Monte Carlo and density functional theory analysis of the distribution of gold and palladium atoms on Au P d(111) alloys. <i>Physical Review B</i> , 2008 , 77,	3.3	50
21	Surface and Tribological Chemistry of Water and Carbon Dioxide on Copper Surfaces. <i>Tribology Letters</i> , 2008 , 31, 167-176	2.8	9
20	Probing reaction pathways on model catalyst surfaces: Vinyl acetate synthesis and olefin metathesis. <i>Journal of Molecular Catalysis A</i> , 2008 , 281, 14-23		10

19	Surface segregation of gold for Au/Pd(111) alloys measured by low-energy electron diffraction and low-energy ion scattering. <i>Surface Science</i> , 2008 , 602, 1084-1091	1.8	45
18	The structure and reactivity of 2-butanol on Pd(111). Surface Science, 2008, 602, 2264-2270	1.8	16
17	Enantioselective chemisorption of propylene oxide on a 2-butanol modified Pd(111) surface: the role of hydrogen-bonding interactions. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15240-9	16.4	32
16	Formation and characterization of Au/Pd surface alloys on Pd(1 1 1). Surface Science, 2007, 601, 1898-19	908	83
15	Formation and decomposition of C3 metallacycles from ethylene and methylene on MoAl alloy thin films. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7091-6	16.4	6
14	Structure and decomposition pathways of vinyl acetate on Pd(111). Surface Science, 2005, 598, 263-275	1.8	32
13	Elucidation of the reaction mechanism for the palladium-catalyzed synthesis of vinyl acetate. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4572-4	16.4	57
12	Elucidation of the Reaction Mechanism for the Palladium-Catalyzed Synthesis of Vinyl Acetate. <i>Angewandte Chemie</i> , 2005 , 117, 4648-4650	3.6	2
11	Hydrocarbon conversion on palladium catalysts. <i>Journal of Molecular Catalysis A</i> , 2005 , 228, 35-45		36
10	Probing enantioselective chemisorption in ultrahigh vacuum. <i>Journal of Molecular Catalysis A</i> , 2004 , 216, 215-221		24
9	Reaction of tributyl phosphite with oxidized iron: surface and tribological chemistry. <i>Langmuir</i> , 2004 , 20, 7557-68	4	43
8	A Comparative Investigation of Aryl Isocyanides Chemisorbed to Palladium and Gold: An ATR-IR Spectroscopic Study. <i>Langmuir</i> , 2004 , 20, 1732-1738	4	57
7	Vinyl acetate formation by the reaction of ethylene with acetate species on oxygen-covered Pd(111). <i>Journal of the American Chemical Society</i> , 2004 , 126, 15384-5	16.4	61
6	Enantioselective chemisorption on a chirally modified surface in ultrahigh vacuum: adsorption of propylene oxide on 2-butoxide-covered palladium(111). <i>Journal of the American Chemical Society</i> , 2002 , 124, 8984-9	16.4	100
5	Surface Chemistry and Extreme-Pressure Lubricant Properties of Dimethyl Disulfide. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 1703-1709	3.4	55
4	Palladium-Catalyzed Acetylene Cyclotrimerization: From Ultrahigh Vacuum to High-Pressure Catalysis. <i>Israel Journal of Chemistry</i> , 1998 , 38, 313-320	3.4	12
3	Determination of the bonding and orientation of ethylene on palladium(111) by near-edge x-ray absorption fine structure and photoelectron spectroscopy. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 4236-4239		60
2	Discovery of a tilted form of benzene chemisorbed on Pd(111): As NEXAFS and photoemission investigation. <i>Surface Science</i> , 1990 , 232, 259-265	1.8	81

Low temperature catalytic chemistry of the Pd(111) surface: benzene and ethylene from acetylene.

Journal of the Chemical Society Chemical Communications, 1983, 623

85