
Minakshi Nihal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic Regulation of Apoptosis in Cutaneous T-Cell Lymphoma: Implications for Therapy with Methotrexate, Jak Inhibitors, and Resveratrol. Journal of Investigative Dermatology, 2022, 142, 493-496.e7.	0.3	3
2	PLK4 is upregulated in prostate cancer and its inhibition reduces centrosome amplification and causes senescence. Prostate, 2022, 82, 957-969.	1.2	15
3	Genetic Manipulation of Sirtuin 3 Causes Alterations of Key Metabolic Regulators in Melanoma. Frontiers in Oncology, 2021, 11, 676077.	1.3	8
4	Combined Inhibition of Specific Sirtuins as a Potential Strategy to Inhibit Melanoma Growth. Frontiers in Oncology, 2020, 10, 591972.	1.3	6
5	4′â€Bromoâ€resveratrol, a dual Sirtuinâ€1 and Sirtuinâ€3 inhibitor, inhibits melanoma cell growth through mitochondrial metabolic reprogramming. Molecular Carcinogenesis, 2019, 58, 1876-1885.	1.3	29
6	Centriole Overduplication is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma. Molecular Cancer Research, 2018, 16, 517-527.	1.5	43
7	Histone Deacetylase Inhibitory Approaches for the Management of Osteoarthritis. American Journal of Pathology, 2016, 186, 2555-2558.	1.9	6
8	Pro-Proliferative Function of Mitochondrial Sirtuin Deacetylase SIRT3 in Human Melanoma. Journal of Investigative Dermatology, 2016, 136, 809-818.	0.3	64
9	c-CBL regulates melanoma proliferation, migration, invasion and the FAK-SRC-GRB2 nexus. Oncotarget, 2016, 7, 53869-53880.	0.8	17
10	Molecular signatures of sanguinarine in human pancreatic cancer cells: <i>A large scale label-free comparative proteomics approach</i> . Oncotarget, 2015, 6, 10335-10349.	0.8	25
11	SIRT1 is upregulated in cutaneous T-cell lymphoma, and its inhibition induces growth arrest and apoptosis. Cell Cycle, 2014, 13, 632-640.	1.3	40
12	SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation. Archives of Biochemistry and Biophysics, 2014, 563, 94-100.	1.4	62
13	Excellent anti-proliferative and pro-apoptotic effects of (â^')-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1619-1626.	1.7	131
14	Methotrexate inhibits the viability of human melanoma cell lines and enhances Fas/Fas-ligand expression, apoptosis and response to interferon-alpha: Rationale for its use in combination therapy. Archives of Biochemistry and Biophysics, 2014, 563, 101-107.	1.4	28
15	Anti-Melanoma Effects of Vorinostat in Combination with Polyphenolic Antioxidant (â^')-Epigallocatechin-3-Gallate (EGCG). Pharmaceutical Research, 2010, 27, 1103-1114.	1.7	58
16	Low FAS/CD95 Expression by CTCL Correlates with Reduced Sensitivity to Apoptosis that Can Be Restored by FAS Upregulation. Journal of Investigative Dermatology, 2009, 129, 1165-1173.	0.3	80
17	Anti-proliferative and proapoptotic effects of (?)-epigallocatechin-3-gallate on human melanoma: Possible implications for the chemoprevention of melanoma. International Journal of Cancer, 2005, 114, 513-521.	2.3	218