Sarwish Rafiq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6843166/publications.pdf

Version: 2024-02-01

567281 434195 2,899 38 15 31 citations h-index g-index papers 39 39 39 4437 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multipurposing CARs: Same engine, different vehicles. Molecular Therapy, 2022, 30, 1381-1395.	8.2	9
2	Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. Cancer Treatment and Research, 2022, 183, 161-184.	0.5	2
3	Engineered Cytokines for Cancer and Autoimmune Disease Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2002214.	7.6	19
4	Using Adoptive Cellular Therapy for Localized Protein Secretion. Cancer Journal (Sudbury, Mass), 2021, 27, 159-167.	2.0	3
5	Supporting the next generation of scientists to lead cancer immunology research. Cancer Immunology Research, 2021, 9, canimm.0519.2021.	3.4	1
6	Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nature Reviews Clinical Oncology, 2020, 17, 147-167.	27.6	786
7	Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nature Communications, 2020, 11, 6298.	12.8	82
8	Excessive Costimulation Leads to Dysfunction of Adoptively Transferred T Cells. Cancer Immunology Research, 2020, 8, 732-742.	3.4	16
9	Optimization of T-cell Receptor–Modified T Cells for Cancer Therapy. Cancer Immunology Research, 2020, 8, 743-755.	3.4	16
10	Abstract A37: Engineering armored TCR-modified T cells to enhance anti-tumor efficacy. , 2020, , .		0
11	Abstract IA21: MUC16-directed immunotherapy for ovarian cancer. Clinical Cancer Research, 2020, 26, IA21-IA21.	7.0	2
12	Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine, 2019, 39, 173-181.	6.1	47
13	Tumors evading CARsâ€"the chase is on. Nature Medicine, 2018, 24, 1492-1493.	30.7	32
14	Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nature Biotechnology, 2018, 36, 847-856.	17.5	564
15	Abstract 2568: CAR T cells secreting an immune checkpoint blockade scFv have enhanced anti-tumor efficacy. , 2018, , .		0
16	Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms Tumor 1 antigen. Leukemia, 2017, 31, 1788-1797.	7.2	125
17	Enhancing CAR T Cell Anti-Tumor Efficacy through Secreted Single Chain Variable Fragment (scFv) Immune Checkpoint Blockade. Blood, 2017, 130, 842-842.	1.4	3
18	393. Engineering Armored T Cell Receptor-Mimic (TCRm) Chimeric Antigen Receptor (CAR) T Cells Specific for the Intracellular Protein Wilms Tumor 1 (WT1) for Treatment of Hematologic and Solid Malignancies. Molecular Therapy, 2016, 24, S156.	8.2	0

#	Article	IF	CITATIONS
19	Driving CAR T-cells forward. Nature Reviews Clinical Oncology, 2016, 13, 370-383.	27.6	492
20	CD33-Directed Chimeric Antigen Receptor (CAR) T Cells for the Treatment of Acute Myeloid Leukemia (AML). Blood, 2016, 128, 2825-2825.	1.4	9
21	CAR therapy for hematological cancers: can success seen in the treatment of B-cell acute lymphoblastic leukemia be applied to other hematological malignancies?. Immunotherapy, 2015, 7, 545-561.	2.0	26
22	NK-92 cells engineered with anti-CD33 chimeric antigen receptors (CAR) for the treatment of Acute Myeloid Leukemia (AML). Cytotherapy, 2015, 17, S23.	0.7	15
23	Ocaratuzumab, an Fc-engineered antibody demonstrates enhanced antibody-dependent cell-mediated cytotoxicity in chronic lymphocytic leukemia. MAbs, 2014, 6, 748-754.	5.2	37
24	Ibrutinib antagonizes rituximab-dependent NK cell–mediated cytotoxicity. Blood, 2014, 123, 1957-1960.	1.4	196
25	Engineered T Cell Receptor-Mimic Antibody, (TCRm) Chimeric Antigen Receptor (CAR) T Cells Against the Intracellular Protein Wilms Tumor-1 (WT1) for Treatment of Hematologic and Solid Cancers. Blood, 2014, 124, 2155-2155.	1.4	6
26	Glycovariant anti-CD37 monospecific protein therapeutic exhibits enhanced effector cell-mediated cytotoxicity against chronic and acute B cell malignancies. MAbs, 2013, 5, 723-735.	5.2	9
27	Comparative Assessment of Clinically Utilized CD20-Directed Antibodies in Chronic Lymphocytic Leukemia Cells Reveals Divergent NK Cell, Monocyte, and Macrophage Properties. Journal of Immunology, 2013, 190, 2702-2711.	0.8	85
28	Ibrutinib (PCI-32765) Antagonizes Rituximab-Dependent NK-Cell Mediated Cytotoxicity. Blood, 2013, 122, 373-373.	1.4	8
29	XmAb-5574 antibody demonstrates superior antibody-dependent cellular cytotoxicity as compared with CD52- and CD20-targeted antibodies in adult acute lymphoblastic leukemia cells. Leukemia, 2012, 26, 1720-1722.	7.2	8
30	Tetraspanin CD37 Directly Mediates Transduction of Survival and Apoptotic Signals. Cancer Cell, 2012, 21, 694-708.	16.8	122
31	TLR7/8 Agonists Overcome the Suppression of $Fc\hat{l}^3R$ Activity in Monocytes From Chronic Lymphocytic Leukemia Patients. Blood, 2012, 120, 4595-4595.	1.4	0
32	Comparative Assessment of Different Clinically Utilized CD20 Directed Antibodies in Chronic Lymphocytic Leukemia (CLL) Cells Reveals Divergent NK-Cell, Monocyte and Macrophage Properties,. Blood, 2011, 118, 3717-3717.	1.4	1
33	Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood, 2010, 116, 1025-1034.	1.4	138
34	GlycoVariant Anti-CD37 Small Modular Immuno-Pharmaceutical Exhibits Superior Natural Killer Cell Mediated Cytotoxicity Against Chronic Lymphocytic Leukemia Cells at Low Concentrations and Low Antigen Density. Blood, 2010, 116, 1847-1847.	1.4	0
35	Hsp90 Co-localizes with Rab-GDI-1 and Regulates Agonist-induced Amylase Release in AR42J Cells. Cellular Physiology and Biochemistry, 2009, 24, 369-378.	1.6	16
36	A Phase 1 Trial of TRU-016, An Anti-CD37 Small Modular Immunopharmaceutical (SMIPTM) Protein in Relapsed and Refractory CLL: Early Promising Clinical Activity Blood, 2009, 114, 3424-3424.	1.4	9

SARWISH RAFIQ

#	Article	IF	CITATIONS
37	Glycovariant CD37 Small Modular Immuno-Pharmaceutical (TruADhanCeâ,,¢ SMIP) Promotes Enhanced Natural Killer Cell Mediated Cytotoxicity against Primary Chronic Lymphocytic Leukemia Cells Blood, 2009, 114, 1744-1744.	1.4	0
38	Inhibition of human erythrocyte invasion by Babesia divergens using serine protease inhibitors. Molecular and Biochemical Parasitology, 2007, 153, 80-84.	1.1	15