Inas Helwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6842990/publications.pdf

Version: 2024-02-01

		759233	1125743
17	1,262 citations	12	13
papers	citations	h-index	g-index
1.0	1.0	10	2720
18	18	18	2739
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLoS ONE, 2017, 12, e0170628.	2.5	452
2	MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence. Tissue Engineering - Part A, 2017, 23, 1231-1240.	3.1	182
3	Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse. Journal of Neuroscience, 2016, 36, 8653-8667.	3.6	177
4	Molecular and Histopathological Changes Associated with Keratoconus. BioMed Research International, 2017, 2017, 1-16.	1.9	92
5	Differentially expressed microRNAs in the aqueous humor of patients with exfoliation glaucoma or primary open-angle glaucoma. Human Molecular Genetics, 2018, 27, 1263-1275.	2.9	71
6	miRNA Profile in Three Different Normal Human Ocular Tissues by miRNA-Seq., 2016, 57, 3731.		46
7	A Common Variant in <i>MIR182</i> Is Associated With Primary Open-Angle Glaucoma in the NEIGHBORHOOD Consortium., 2016, 57, 4528.		42
8	Screening of the Seed Region of <i>MIR184</i> ii Keratoconus Patients from Saudi Arabia. BioMed Research International, 2015, 2015, 1-7.	1.9	32
9	Regulation of the Glycerol Transporter, Aquaporin-3, by Histone Deacetylase-3 andÂp53 in Keratinocytes. Journal of Investigative Dermatology, 2017, 137, 1935-1944.	0.7	29
10	Aquaporin-3 Re-Expression Induces Differentiation in a Phospholipase D2-Dependent Manner in Aquaporin-3-Knockout Mouse Keratinocytes. Journal of Investigative Dermatology, 2015, 135, 499-507.	0.7	24
11	Magnetic nanoparticles as a new approach to improve the efficacy of gene therapy against differentiated human uterine fibroid cells and tumor-initiating stem cells. Fertility and Sterility, 2016, 105, 1638-1648.e8.	1.0	24
12	Expression of mRNAs, miRNAs, and IncRNAs in Human Trabecular Meshwork Cells Upon Mechanical Stretch., 2020, 61, 2.		24
13	The Antipsoriatic Agent Monomethylfumarate Has Antiproliferative, Prodifferentiative, and Anti-Inflammatory Effects on Keratinocytes. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 90-97.	2.5	23
14	Case-control association between CCT-associated variants and keratoconus in a Saudi Arabian population. Journal of Negative Results in BioMedicine, 2015, 14, 10.	1.4	20
15	Anti-Psoriatic Drug Monomethylfumarate Increases Nuclear Factor Erythroid 2-Related Factor 2 Levels and Induces Aquaporin-3 mRNA and Protein Expression. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 243-253.	2.5	18
16	Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes. Journal of Dermatological Science, 2014, 76, 186-195.	1.9	5
17	Response to Letter to the Editor on "Anti-Psoriatic Drug Monomethylfumarate Increases Nuclear Factor Erythroid 2-Related Factor 2 Levels and Induces Aquaporin-3 mRNA and Protein Expression― Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 449-451.	2.5	O