
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6842980/publications.pdf Version: 2024-02-01

PASCAL DOLLÃO

#	Article	IF	CITATIONS
1	Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid-receptor gene. Nature, 1996, 383, 819-823.	27.8	1,652
2	Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genetics, 1999, 21, 444-448.	21.4	963
3	Retinoic acid signalling during development. Development (Cambridge), 2012, 139, 843-858.	2.5	693
4	Genetic analysis of RXRα developmental function: Convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell, 1994, 78, 987-1003.	28.9	671
5	A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell, 1993, 75, 1333-1349.	28.9	612
6	Retinoic acid in development: towards an integrated view. Nature Reviews Genetics, 2008, 9, 541-553.	16.3	603
7	Poly(ADP-ribose) Polymerase-2 (PARP-2) Is Required for Efficient Base Excision DNA Repair in Association with PARP-1 and XRCC1. Journal of Biological Chemistry, 2002, 277, 23028-23036.	3.4	602
8	Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature, 1989, 342, 767-772.	27.8	593
9	A High-Resolution Anatomical Atlas of the Transcriptome in the Mouse Embryo. PLoS Biology, 2011, 9, e1000582.	5.6	552
10	Differential expression of genes encoding α, β and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature, 1989, 342, 702-705.	27.8	496
11	The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes and Development, 2001, 15, 226-240.	5.9	492
12	Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nature Genetics, 1997, 16, 345-351.	21.4	489
13	Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mechanisms of Development, 1997, 62, 67-78.	1.7	486
14	Identification and characterization of rod-derived cone viability factor. Nature Genetics, 2004, 36, 755-759.	21.4	463
15	Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell, 1993, 75, 431-441.	28.9	443
16	Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nature Genetics, 2006, 38, 112-117.	21.4	299
17	Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature, 1992, 359, 835-841.	27.8	285
18	Developmental expression of murine retinoid X receptor (RXR) genes. Mechanisms of Development, 1994, 45, 91-104.	1.7	285

#	Article	IF	CITATIONS
19	Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Developmental Biology, 2003, 262, 206-224.	2.0	260
20	Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Developmental Biology, 2005, 284, 399-411.	2.0	226
21	Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mechanisms of Development, 2002, 110, 165-171.	1.7	220
22	Expression of GHF-1 protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity. Cell, 1990, 60, 809-820.	28.9	216
23	Retinoic Acid Controls the Bilateral Symmetry of Somite Formation in the Mouse Embryo. Science, 2005, 308, 563-566.	12.6	214
24	Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nature Genetics, 2002, 31, 84-88.	21.4	213
25	Cloning of a novel retinoic-acid metabolizing cytochrome P450, Cyp26B1, and comparative expression analysis with Cyp26A1 during early murine development. Mechanisms of Development, 2001, 107, 195-201.	1.7	208
26	The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development (Cambridge), 2003, 130, 2525-2534.	2.5	200
27	Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Mechanisms of Development, 1997, 63, 173-186.	1.7	184
28	AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mechanisms of Development, 1996, 54, 83-94.	1.7	175
29	Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mechanisms of Development, 2002, 110, 173-177.	1.7	172
30	Efficient Cloning of cDNAs of Retinoic Acid-Responsive Genes in P19 Embryonal Carcinoma Cells and Characterization of a Novel Mouse Gene, Stra1 (Mouse LERK-2/Eplg2). Developmental Biology, 1995, 170, 420-433.	2.0	168
31	Expression of the murine Dlx-1 homeobox gene during facial, ocular and limb development. Differentiation, 1992, 49, 93-99.	1.9	159
32	Non-cell-autonomous retinoid signaling is crucial for renal development. Development (Cambridge), 2010, 137, 283-292.	2.5	149
33	Mouse Lbx1 and human LBX1 define a novel mammalian homeoâ~•gene family related to the Drosophila lady bird genes. Mechanisms of Development, 1995, 53, 345-356.	1.7	147
34	Hox genes define distinct progenitor sub-domains within the second heart field. Developmental Biology, 2011, 353, 266-274.	2.0	144
35	Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1763-1768.	7.1	143
36	miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics, 2010, 11, 715.	2.8	140

3

#	Article	IF	CITATIONS
37	Developmental roles of the retinoic acid receptors. Journal of Steroid Biochemistry and Molecular Biology, 1995, 53, 475-486.	2.5	137
38	Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Developmental Biology, 2006, 297, 433-445.	2.0	136
39	The Hox-4.8 gene is localized at the 5′ extremity of the Hox-4 complex and is expressed in the most posterior parts of the body during development. Mechanisms of Development, 1991, 36, 3-13.	1.7	134
40	Cyp26C1 encodes a novel retinoic acid-metabolizing enzyme expressed in the hindbrain, inner ear, first branchial arch and tooth buds during murine development. Gene Expression Patterns, 2003, 3, 449-454.	0.8	133
41	CTIP1 and CTIP2 are differentially expressed during mouse embryogenesis. Gene Expression Patterns, 2004, 4, 733-739.	0.8	133
42	CYP26A1 and CYP26C1 cooperatively regulate anterior–posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse. Developmental Biology, 2007, 302, 399-411.	2.0	128
43	Tissue-specific expression of retinoic acid receptor isoform transcripts in the mouse embryo. Mechanisms of Development, 2000, 94, 223-232.	1.7	117
44	Developmental expression of retinoic acid receptors (RARs). Nuclear Receptor Signaling, 2009, 7, nrs.07006.	1.0	116
45	Defects of the Chorioallantoic Placenta in Mouse RXRα Null Fetuses. Developmental Biology, 1997, 191, 29-41.	2.0	115
46	Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling. Development (Cambridge), 2006, 133, 351-361.	2.5	114
47	Retinaldehyde dehydrogenase 2 (RALDH2)- independent patterns of retinoic acid synthesis in the mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16111-16116.	7.1	109
48	Signaling hierarchy downstream of retinoic acid that independently regulates vascular remodeling and endothelial cell proliferation. Genes and Development, 2004, 18, 1345-1358.	5.9	108
49	AP-2.2: A Novel AP-2-Related Transcription Factor Induced by Retinoic Acid during Differentiation of P19 Embryonal Carcinoma Cells. Experimental Cell Research, 1996, 225, 338-347.	2.6	106
50	Retinoids regulate the anterior expression boundaries of 5' Hoxb genes in posterior hindbrain. EMBO Journal, 2003, 22, 262-269.	7.8	103
51	Sequence and expression pattern of the Stra7 (Gbx-2) homeobox-containing gene induced by retinoic acid in P19 embryonal carcinoma cells. Developmental Dynamics, 1995, 204, 372-382.	1.8	100
52	Early mouse caudal development relies on crosstalk between retinoic acid,Shh and Fgf signalling pathways. Development (Cambridge), 2009, 136, 665-676.	2.5	98
53	Retinoids control anterior and dorsal properties in the developing forebrain. Developmental Biology, 2007, 303, 362-375.	2.0	97
54	Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16687-16692.	7.1	97

#	Article	IF	CITATIONS
55	Endogenous retinoic acid regulates cardiac progenitor differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9234-9239.	7.1	96
56	Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Developmental Biology, 2006, 291, 12-24.	2.0	93
57	Meis2, a novel mousePbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Developmental Dynamics, 1997, 210, 173-183.	1.8	88
58	Retinoic acid signalling is required for specification of pronephric cell fate. Developmental Biology, 2006, 299, 35-51.	2.0	80
59	The Expression Pattern of the Mouse Receptor Tyrosine Kinase Gene MDK1 Is Conserved through Evolution and Requires Hoxa-2 for Rhombomere-Specific Expression in Mouse Embryos. Developmental Biology, 1996, 177, 397-412.	2.0	79
60	Developing with lethal RA levels: genetic ablation of Rarg can restore the viability of mice lacking Cyp26a1. Development (Cambridge), 2003, 130, 1449-1459.	2.5	74
61	Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning. Developmental Dynamics, 2009, 238, 732-745.	1.8	73
62	Differential expression of transcripts encoding retinoid binding proteins and retinoic acid receptors during placentation of the mouse. , 1997, 208, 199-210.		72
63	Retinaldehyde dehydrogenase 2 and Hoxc8 are required in the murine brachial spinal cord for the specification of Lim1+ motoneurons and the correct distribution of Islet1+ motoneurons. Development (Cambridge), 2005, 132, 1611-1621.	2.5	70
64	Insertion of a targeting construct in a Hoxd-10 allele can influence the control of Hoxd-9 expression. Developmental Dynamics, 1994, 201, 366-377.	1.8	66
65	Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro. , 1998, 212, 423-436.		66
66	Direct crossregulation between retinoic acid receptor Î ² and Hox genes during hindbrain segmentation. Development (Cambridge), 2005, 132, 503-513.	2.5	65
67	Retinoid signaling in inner ear development. Journal of Neurobiology, 2006, 66, 687-704.	3.6	63
68	Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development (Cambridge), 2002, 129, 3563-74.	2.5	62
69	Rescue of cytochrome P450 oxidoreductase (Por) mouse mutants reveals functions in vasculogenesis, brain and limb patterning linked to retinoic acid homeostasis. Developmental Biology, 2007, 303, 66-81.	2.0	61
70	Expression of the murine retinol dehydrogenase 10 (<i>Rdh10</i>) gene correlates with many sites of retinoid signalling during embryogenesis and organ differentiation. Developmental Dynamics, 2007, 236, 2899-2908.	1.8	60
71	Retinoic acid signaling regulates murine bronchial tubule formation. Mechanisms of Development, 2003, 120, 691-700.	1.7	50
72	FGF Signalling Regulates Chromatin Organisation during Neural Differentiation via Mechanisms that Can Be Uncoupled from Transcription. PLoS Genetics, 2013, 9, e1003614.	3.5	50

#	Article	IF	CITATIONS
73	Expression patterns of the Ets transcription factors from the PEA3 group during early stages of mouse development. Mechanisms of Development, 2001, 108, 191-195.	1.7	49
74	The oxidizing enzyme CYP26a1 tightly regulates the availability of retinoic acid in the gastrulating mouse embryo to ensure proper head development and vasculogenesis. Developmental Dynamics, 2007, 236, 644-653.	1.8	48
75	Truncation of the Catalytic Domain of the Cylindromatosis Tumor Suppressor Impairs Lung Maturation. Neoplasia, 2009, 11, 469-476.	5.3	47
76	Retinoic Acid Receptor Î ² Controls Development of Striatonigral Projection Neurons through FGF-Dependent and Meis1-Dependent Mechanisms. Journal of Neuroscience, 2015, 35, 14467-14475.	3.6	47
77	Morphological and Molecular Characterization of Retinoic Acid-Induced Limb Duplications in Mice. Developmental Biology, 1996, 176, 185-198.	2.0	46
78	Kidney-specific inactivation of Ofd1 leads to renal cystic disease associated with upregulation of the mTOR pathway. Human Molecular Genetics, 2010, 19, 2792-2803.	2.9	46
79	Stage and tissue-specific expression of the alcohol dehydrogenase 1 (Adh-1) gene during mouse development. Developmental Dynamics, 1994, 199, 199-213.	1.8	45
80	A Bidirectional Promoter Connects the Poly(ADP-ribose) Polymerase 2 (PARP-2) Gene to the Gene for RNase P RNA. Journal of Biological Chemistry, 2001, 276, 11092-11099.	3.4	43
81	Combinatorial signalling controls Neurogenin2 expression at the onset of spinal neurogenesis. Developmental Biology, 2008, 321, 470-481.	2.0	43
82	Molars and incisors: show your microarray IDs. BMC Research Notes, 2013, 6, 113.	1.4	43
83	Differential expression of retinoic acid-inducible (Stra) genes during mouse placentation. Mechanisms of Development, 2000, 92, 295-299.	1.7	42
84	External Genitalia Formation. Annals of the New York Academy of Sciences, 2001, 948, 13-31.	3.8	42
85	The retinoic acid receptors RARα and RARÎ ³ are required for inner ear development. Mechanisms of Development, 2002, 119, 213-223.	1.7	40
86	Expression Analysis of Murine Genes Using <i>In Situ</i> Hybridization With Radioactive and Nonradioactively Labeled RNA Probes. , 2006, 326, 61-88.		40
87	Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta. Human Molecular Genetics, 2015, 24, 3038-3049.	2.9	40
88	Vax2 regulates retinoic acid distribution and cone opsin expression in the vertebrate eye. Development (Cambridge), 2011, 138, 261-271.	2.5	39
89	Developmental expression of the mouse <i>Evx-2</i> gene: relationship with the evolution of the HOM/Hox complex. Development (Cambridge), 1994, 1994, 143-153.	2.5	38
90	Restricted expression of the ron gene encoding the macrophage stimulating protein receptor during mouse development. Developmental Dynamics, 1995, 204, 383-390.	1.8	37

#	Article	IF	CITATIONS
91	Dynamic expression of the retinoic acidâ€synthesizing enzyme retinol dehydrogenase 10 (rdh10) in the developing mouse brain and sensory organs. Journal of Comparative Neurology, 2008, 508, 879-892.	1.6	37
92	Retinoic acid regulates olfactory progenitor cell fate and differentiation. Neural Development, 2013, 8, 13.	2.4	35
93	Retinoic acid controls early neurogenesis in the developing mouse cerebral cortex. Developmental Biology, 2017, 430, 129-141.	2.0	35
94	Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders. Molecular Neurobiology, 2017, 54, 3859-3878.	4.0	34
95	Molecular cloning, genomic structure, and expression analysis of the mouse transcriptional intermediary factor 1 gamma gene. Gene, 2004, 334, 3-13.	2.2	33
96	Dynamic expression of retinoic acid-synthesizing and -metabolizing enzymes in the developing mouse inner ear. Journal of Comparative Neurology, 2006, 496, 643-654.	1.6	33
97	Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development. Frontiers in Physiology, 2014, 5, 345.	2.8	33
98	Expression of T : G mismatch-specific thymidine-DNA glycosylase and DNA methyl transferase genes during development and tumorigenesis. Oncogene, 1998, 17, 1577-1585.	5.9	28
99	Transcriptomic Analysis of Murine Embryos Lacking Endogenous Retinoic Acid Signaling. PLoS ONE, 2013, 8, e62274.	2.5	27
100	Endogenous retinoic acid signaling is required for maintenance and regeneration of cornea. Experimental Eye Research, 2017, 154, 190-195.	2.6	27
101	Fate of retinoic acid–activated embryonic cell lineages. Developmental Dynamics, 2010, 239, 3260-3274.	1.8	26
102	The macroPARP genes <i>parpâ€9</i> and <i>parpâ€14</i> are developmentally and differentially regulated in mouse tissues. Developmental Dynamics, 2008, 237, 209-215.	1.8	25
103	Retinoic Acid Deficiency Impairs the Vestibular Function. Journal of Neuroscience, 2013, 33, 5856-5866.	3.6	25
104	Genetic Inactivation of Prokineticin Receptor-1 Leads to Heart and Kidney Disorders. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 842-850.	2.4	24
105	Retinoic Acid-Dependent Signaling Pathways and Lineage Events in the Developing Mouse Spinal Cord. PLoS ONE, 2012, 7, e32447.	2.5	24
106	Prokineticin receptor-1 signaling promotes Epicardial to Mesenchymal Transition during heart development. Scientific Reports, 2016, 6, 25541.	3.3	24
107	Complementary expression patterns of retinoid acid-synthesizing and -metabolizing enzymes in pre-natal mouse inner ear structures. Gene Expression Patterns, 2004, 4, 123-133.	0.8	23
108	RSK2 Is a Modulator of Craniofacial Development. PLoS ONE, 2014, 9, e84343.	2.5	23

#	Article	IF	CITATIONS
109	Specific expression of the retinoic acid-synthesizing enzyme RALDH2 during mouse inner ear development. Mechanisms of Development, 2001, 106, 185-189.	1.7	22
110	In Situ Hybridization with 35S-Labeled Probes for Retinoid Receptors. , 1998, 89, 247-267.		21
111	Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation. Nature Communications, 2016, 7, 11063.	12.8	21
112	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biology, 2020, 18, e3000902.	5.6	21
113	Meningeal retinoic acid contributes to neocortical lamination and radial migration during mouse brain development. Biology Open, 2017, 6, 148-160.	1.2	20
114	Distinct retinoic acid receptor (RAR) isotypes control differentiation of embryonal carcinoma cells to dopaminergic or striatopallidal medium spiny neurons. Scientific Reports, 2017, 7, 13671.	3.3	19
115	Restricted expression of a novel retinoic acid responsive gene during limb bud dorsoventral patterning and endochondral ossification. , 1996, 19, 66-73.		18
116	Expression of the transcriptional intermediary factor TIF1 $\hat{l}\pm$ during mouse development and in the reproductive organs. Mechanisms of Development, 1999, 88, 111-117.	1.7	16
117	Deficiency of the SMOC2 matricellular protein impairs bone healing and produces age-dependent bone loss. Scientific Reports, 2020, 10, 14817.	3.3	16
118	Regulation of expression of the retinoic acid metabolizing enzyme CYP26A1 in uteri of ovariectomized mice after treatment with ovarian steroid hormones. Molecular Reproduction and Development, 2007, 74, 258-264.	2.0	15
119	Conditional (loxP-flanked) allele for the gene encoding the retinoic acid-synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2). Genesis, 2006, 44, 155-158.	1.6	14
120	Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects. Frontiers in Physiology, 2016, 7, 673.	2.8	14
121	Retinoic acid signaling is directly activated in cardiomyocytes and protects mouse hearts from apoptosis after myocardial infarction. ELife, 2021, 10, .	6.0	14
122	Regulation of expression of the retinoic acid-synthesising enzymes retinaldehyde dehydrogenases in the uteri of ovariectomised mice after treatment with oestrogen, gestagen and their combination. Reproduction, Fertility and Development, 2006, 18, 339.	0.4	13
123	Enamel and dental anomalies in latentâ€transforming growth factor betaâ€binding protein 3 mutant mice. European Journal of Oral Sciences, 2017, 125, 8-17.	1.5	13
124	Retinoic Acid Receptor (RAR)-α Is Not Critically Required for Mediating Retinoic Acid Effects in the Developing Mouse Retina. , 2010, 51, 3281.		11
125	Rescue of morphogenetic defects and of retinoic acid signaling in retinaldehyde dehydrogenase 2 (Raldh2) mouse mutants by chimerism with wild-type cells. Differentiation, 2006, 74, 661-668.	1.9	10
126	Prokineticin receptor 1 is required for mesenchymalâ€epithelial transition in kidney development. FASEB Journal, 2016, 30, 2733-2740.	0.5	7

#	Article	IF	CITATIONS
127	The homeodomain factor <i>Gbx1</i> is required for locomotion and cell specification in the dorsal spinal cord. PeerJ, 2013, 1, e142.	2.0	7
128	Molecular mediators of retinoic acid signaling during development. Advances in Developmental Biology (Amsterdam, Netherlands), 2006, , 105-143.	0.4	6
129	Structural and Functional Aspects of Mammalian Hox Genes. Advances in Developmental Biochemistry, 1993, , 57-109.	0.9	3
130	Retinoids and mouse placentation. Placenta, 1998, 19, 57-76.	1.5	3
131	Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration. Progress in Neurobiology, 2022, 212, 102246.	5.7	3
132	Teratogenic effects of ethanol: Interaction with retinoid metabolism. Toxicology Letters, 2006, 164, S49-S50.	0.8	1
133	Retinoids and Heart Development. , 2010, , 237-253.		1
134	A Comparison of the Expression Domains of the Murine Hox-4, RARs and CRABP Genes Suggests Possible Functional Relationships During Patterning of the Vertebrate Limb. , 1991, , 65-73.		1
135	Malformaciones congénitas de las extremidades: embriologÃa, etiologÃa. EMC Pediatria, 2003, 38, 1-7.	0.0	0
136	Malformations congénitales des membresÂ: embryologie, étiologie. EMC - Pédiatrie - Maladies Infectieuses, 2006, 1, 1-8.	0.0	0
137	ISDN2014_0036: REMOVED: Craniofacial development is fine tuned by Sox2. International Journal of Developmental Neuroscience, 2015, 47, 7-7.	1.6	0
138	Integrated Annotation and Analysis of In Situ Hybridization Images Using the ImAnno System: Application to the Ear and Sensory Organs of the Fetal Mouse. PLoS ONE, 2015, 10, e0118024.	2.5	0