Daekyung Sung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6842657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile Solvent-Free Preparation of Antioxidant Idebenone-Loaded Nanoparticles for Efficient Wound Healing. Pharmaceutics, 2022, 14, 521.	4.5	5
2	α-Tocopherol-loaded reactive oxygen species-scavenging ferrocene nanocapsules with high antioxidant efficacy for wound healing. International Journal of Pharmaceutics, 2021, 596, 120205.	5.2	17
3	Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs. Acta Biomaterialia, 2021, 125, 242-252.	8.3	15
4	Novel carboxylated ferrocene polymer nanocapsule with high reactive oxygen species sensitivity and on-demand drug release for effective cancer therapy. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111566.	5.0	10
5	Continuous synthesis of stable ferrocene nanoparticles using a self-aligned coaxial turbulent jet mixer. Journal of Industrial and Engineering Chemistry, 2021, 97, 434-440.	5.8	4
6	High Solubilization and Controlled Release of Paclitaxel Using Thermosponge Nanoparticles for Effective Cancer Therapy. Pharmaceutics, 2021, 13, 1150.	4.5	6
7	A Novel Polyvinylpyrrolidone-Stabilized Illite Microparticle with Enhanced Antioxidant and Antibacterial Effect. Polymers, 2021, 13, 4275.	4.5	4
8	<p>Potential Antioxidant and Wound Healing Effect of Nano-Liposol with High Loading Amount of Astaxanthin</p> . International Journal of Nanomedicine, 2020, Volume 15, 9231-9240.	6.7	24
9	Enhanced Antibiofilm Effects of N2 Plasma-Treated Buffer Combined with Antimicrobial Hexapeptides Against Plant Pathogens. Polymers, 2020, 12, 1992.	4.5	4
10	Antimicrobial Air Filter Coating with Plant Extracts Against Airborne Microbes. Applied Sciences (Switzerland), 2020, 10, 9120.	2.5	10
11	Electrospinning/Electrospray of Ferrocene Containing Copolymers to Fabricate ROS-Responsive Particles and Fibers. Polymers, 2020, 12, 2520.	4.5	15
12	Potential of non-thermal N2 plasma-treated buffer (NPB) for inhibiting plant pathogenic bacteria and enhancing food storage. LWT - Food Science and Technology, 2020, 125, 109210.	5.2	9
13	Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor. RSC Advances, 2020, 10, 2998-3004.	3.6	10
14	Reactive oxygen species (ROS)-responsive ferrocene-polymer-based nanoparticles for controlled release of drugs. Journal of Materials Chemistry B, 2020, 8, 1906-1913.	5.8	43
15	Understanding the Redox Reaction of Self-Assembled Ferrocence-Containing Polymer Particle Comprising Ferrocenylmethyl Methacrylate–Methacrylic Acid Random Copolymers. Journal of the Electrochemical Society, 2020, 167, 136515.	2.9	1
16	Super-antibiofilm effect of N2 plasma treated buffer (NPB) against plant pathogenic bacterium. Journal of Biological Engineering, 2019, 13, 94.	4.7	3
17	Facile method for constructing an effective electron transfer mediating layer using ferrocene-containing multifunctional redox copolymer. Electrochimica Acta, 2014, 133, 40-48.	5.2	18
18	High-density immobilization of antibodies onto nanobead-coated cyclic olefin copolymer plastic surfaces for application as a sensitive immunoassay chip. Biomedical Microdevices, 2013, 15, 691-698.	2.8	13

#	Article	IF	CITATIONS
19	Facile Immobilization of Biomolecules onto Various Surfaces Using Epoxide-Containing Antibiofouling Polymers. Langmuir, 2012, 28, 4507-4514.	3.5	38
20	Toward immunoassay chips: Facile immobilization of antibodies on cyclic olefin copolymer substrates through pre-activated polymer adlayers. Biosensors and Bioelectronics, 2011, 26, 3967-3972.	10.1	34
21	Facile Method for Selective Immobilization of Biomolecules on Plastic Surfaces. Langmuir, 2009, 25, 11289-11294.	3.5	32