## Xinlei Li

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6842571/publications.pdf Version: 2024-02-01



XINLELLI

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The effects of substrate morphology by regulating pseudopods formation on cell directional alignment and migration. Journal Physics D: Applied Physics, 2022, 55, 105401.                             | 1.3 | 3         |
| 2  | Highâ€Efficiency Capture of Cells by Softening Cell Membrane. Small, 2022, 18, e2106547.                                                                                                              | 5.2 | 4         |
| 3  | Capture and isolation of tumor cells by graphene intercalated carbon film. Applied Physics Letters, 2022, 120, 063702.                                                                                | 1.5 | 0         |
| 4  | The structural symmetry of nanoholes upon droplet epitaxy. Nanotechnology, 2021, 32, 225602.                                                                                                          | 1.3 | 0         |
| 5  | Zinc oxide spiky nanoparticles: A promising nanomaterial for killing tumor cells. Materials Science and Engineering C, 2021, 124, 112071.                                                             | 3.8 | 14        |
| 6  | Local release and isolation of circulating tumor cells captured by the nano-morphologic substrate coated with gelatin under near-infrared light. Journal of Materials Science, 2021, 56, 16634-16647. | 1.7 | 5         |
| 7  | Graphene oxide-doped photothermal heater in microchannel for thermophoretically shifting micro-<br>and nano-particles. Journal of Applied Physics, 2021, 130, 244901.                                 | 1.1 | 0         |
| 8  | Penetration mechanism of cells by vertical nanostructures. Physical Review E, 2020, 102, 052401.                                                                                                      | 0.8 | 7         |
| 9  | Towards a better understanding of the effects of the magnetic nanoparticles size and magnetic field on cellular endocytosis. Journal Physics D: Applied Physics, 2020, 53, 175401.                    | 1.3 | 2         |
| 10 | Physical understanding of the bending of nanostructures caused by cellular force. Physical Review E, 2020, 101, 032406.                                                                               | 0.8 | 3         |
| 11 | Wavelength-tunable InAsP quantum dots in InP nanowires. Applied Physics Letters, 2019, 115, 053101.                                                                                                   | 1.5 | 7         |
| 12 | Toward a Better Understanding of Hemiwicking: A Simple Model to Comprehensive Prediction.<br>Langmuir, 2019, 35, 2854-2864.                                                                           | 1.6 | 12        |
| 13 | An analytical model for the bending of radial nanowire heterostructures. Physical Chemistry<br>Chemical Physics, 2019, 21, 9477-9482.                                                                 | 1.3 | 3         |
| 14 | Origin of efficiency enhancement in cell capture on nanostructured arrays. Journal of Materials<br>Science, 2019, 54, 4236-4245.                                                                      | 1.7 | 7         |
| 15 | Size Limit and Energy Analysis of Nanoparticles during Wrapping Process by Membrane. Nanomaterials,<br>2018, 8, 899.                                                                                  | 1.9 | 13        |
| 16 | The effects of surface topography of nanostructure arrays on cell adhesion. Physical Chemistry<br>Chemical Physics, 2018, 20, 22946-22951.                                                            | 1.3 | 51        |
| 17 | Fabrication of ultralow-density quantum dots by droplet etching epitaxy. Journal of Materials<br>Research, 2017, 32, 4095-4101.                                                                       | 1.2 | 6         |
| 18 | A Thermodynamic Model of Diameter- and Temperature-dependent Semiconductor Nanowire Growth.<br>Scientific Reports, 2017, 7, 15029.                                                                    | 1.6 | 7         |

Xinlei Li

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets. Nanoscale Research<br>Letters, 2017, 12, 309.                                        | 3.1 | 9         |
| 20 | Enhancement and suppression effects of a nanopatterned surface on bacterial adhesion. Physical<br>Review E, 2016, 93, 052419.                                      | 0.8 | 54        |
| 21 | Bactericidal mechanism of nanopatterned surfaces. Physical Chemistry Chemical Physics, 2016, 18, 1311-1316.                                                        | 1.3 | 144       |
| 22 | Selfâ€Assembly of Multiple Stacked Nanorings by Vertically Correlated Droplet Epitaxy. Advanced Functional Materials, 2014, 24, 530-535.                           | 7.8 | 20        |
| 23 | Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems. Nanotechnology, 2014, 25, 185702.           | 1.3 | 18        |
| 24 | Modification of Stranski–Krastanov growth on the surface of nanowires. Nanotechnology, 2014, 25, 435605.                                                           | 1.3 | 5         |
| 25 | Origin of nanohole formation by etching based on droplet epitaxy. Nanoscale, 2014, 6, 2675.                                                                        | 2.8 | 37        |
| 26 | Selective formation mechanisms of quantum dots on patterned substrates. Physical Chemistry Chemical Physics, 2013, 15, 5238.                                       | 1.3 | 7         |
| 27 | Theory of controllable shape of quantum structures upon droplet epitaxy. Journal of Crystal<br>Growth, 2013, 377, 59-63.                                           | 0.7 | 9         |
| 28 | Size effects of carbon nanotubes and graphene on cellular uptake. Europhysics Letters, 2012, 100, 46002.                                                           | 0.7 | 7         |
| 29 | Size and shape effects on receptor-mediated endocytosis of nanoparticles. Journal of Applied Physics, 2012, 111, .                                                 | 1.1 | 30        |
| 30 | The influence of the atomic interactions in out-of-plane on surface energy and its applications in nanostructures. Journal of Applied Physics, 2012, 112, .        | 1.1 | 10        |
| 31 | Thermodynamic theory of controlled formation of strained quantum dots on hole-patterned substrates. Journal of Applied Physics, 2011, 109, .                       | 1.1 | 4         |
| 32 | Thermodynamic stability of quantum dots on strained substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1755-1758.                        | 1.3 | 1         |
| 33 | A simple method to evaluate the optimal size of nanoparticles for endocytosis based on kinetic diffusion of receptors. Applied Physics Letters, 2010, 97, .        | 1.5 | 19        |
| 34 | Thermodynamic theory of two-dimensional to three-dimensional growth transition in quantum dots self-assembly. Physical Chemistry Chemical Physics, 2010, 12, 4768. | 1.3 | 18        |
| 35 | Strain Self-Releasing Mechanism in Heteroepitaxy on Nanowires. Journal of Physical Chemistry C, 2009, 113, 12402-12406.                                            | 1.5 | 27        |