Hongfa Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6842514/publications.pdf

Version: 2024-02-01

304743 276875 1,721 54 22 41 citations h-index g-index papers 54 54 54 642 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental study on the correlation between mechanical properties of concrete and interface strength of coarse aggregate mortar under freezing–thawing. Structural Concrete, 2023, 24, 2023-2040.	3.1	O
2	Hydration and improved properties of magnesium oxysulfate cement modified by phosphoric acid. Advances in Cement Research, 2022, 34, 36-44.	1.6	2
3	Effect of Carbonation and Drying-Wetting Cycles on Chloride Diffusion Behavior of Coral Aggregate Seawater Concrete. Journal of Ocean University of China, 2022, 21, 113-123.	1.2	3
4	Preparation technology, mechanical properties and durability of coral aggregate seawater concrete in the island-reef environment. Journal of Cleaner Production, 2022, 339, 130572.	9.3	28
5	Effects of compound mineral admixtures on the properties of magnesium oxysulfate cement. Advances in Cement Research, 2022, 34, 560-573.	1.6	2
6	Effects of coral sand powder and corrosion inhibitors on reinforcement corrosion in coral aggregate seawater concrete in a marine environment. Structural Concrete, 2021, 22, 2650-2664.	3.1	12
7	The Improvement Effects of NaH2PO4 and KH2PO4 on the Properties of Magnesium Oxysulfate Cement. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 50-57.	1.0	15
8	Mesoscopic modelling of concrete material under static and dynamic loadings: A review. Construction and Building Materials, 2021, 278, 122419.	7.2	53
9	Uniaxial compressive properties of ecological concrete: Experimental and three-dimensional (3D) mesoscopic investigation. Construction and Building Materials, 2021, 278, 121034.	7.2	17
10	Experimental and mesoscopic investigation on the dynamic properties of coral aggregate concrete in compression. Science China Technological Sciences, 2021, 64, 1153-1166.	4.0	13
11	3D mesoscopic analysis on the compressive behavior of coral aggregate concrete accounting for coarse aggregate volume and maximum aggregate size. Composite Structures, 2021, 273, 114271.	5 . 8	23
12	Effect of Ammonium Citrate Tribasic on the Hydration Reaction and Properties of Magnesium Oxysulfate Cement. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	17
13	Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete column. Frontiers of Structural and Civil Engineering, 2021, 15, 1415-1425.	2.9	2
14	Effects of low- and high-calcium fly ash on the water resistance of magnesium oxysulfate cement. Construction and Building Materials, 2020, 230, 116951.	7.2	54
15	Effect of superplasticisers and their mechanisms of action on magnesium oxysulfate cement properties. Advances in Cement Research, 2020, 32, 225-233.	1.6	4
16	Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete. International Journal of Impact Engineering, 2020, 137, 103466.	5.0	54
17	Coupling effect of strain rate and specimen size on the compressive properties of coral aggregate concrete: A 3D mesoscopic study. Composites Part B: Engineering, 2020, 200, 108299.	12.0	63
18	Influence of steel corrosion to flexural behavior of coral aggregate concrete beam. Journal of Central South University, 2020, 27, 1530-1542.	3.0	5

#	Article	IF	Citations
19	Electrochemical study on steel corrosion in coral aggregate seawater concrete. Emerging Materials Research, 2020, 9, 642-654.	0.7	2
20	Study on the basic performance of basic magnesium sulfate cement concrete. Emerging Materials Research, 2020, 9, 618-627.	0.7	13
21	Brine-freeze-thaw Durability and Crack Density Model of Concrete in Salt Lake Region. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 561-570.	1.0	9
22	Service life prediction of coral aggregate concrete structure under island reef environment. Construction and Building Materials, 2020, 246, 118390.	7.2	39
23	Experimental and three-dimensional mesoscopic investigation of coral aggregate concrete under dynamic splitting-tensile loading. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	43
24	Review of Studies on Structural Performance of Basic Magnesium Sulfate Cement Concrete in China (2014 – 2019). KSCE Journal of Civil Engineering, 2020, 24, 1524-1530.	1.9	8
25	Study on shear behavior of reinforced coral aggregate concrete beam. Advances in Structural Engineering, 2020, 23, 2388-2398.	2.4	3
26	Reinforcement Corrosion Research Based on Electrochemical Impedance Spectroscopy for Coral Aggregate Seawater Concrete in a Seawater Immersion Environment. Journal of Testing and Evaluation, 2020, 48, 1537-1553.	0.7	13
27	Mechanistic Study of the Effects of Magnesia Reactivity on Setting and Hardening of Basic Magnesium Sulfate Cement. Journal of Advanced Concrete Technology, 2020, 18, 678-688.	1.8	13
28	Hydration Behavior of Magnesium Oxysulfate Cement with Fly Ash via Electrochemical Impedance Spectroscopy. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	25
29	An Overview of Study on Basic Magnesium Sulfate Cement and Concrete in China (2012–2019). KSCE Journal of Civil Engineering, 2019, 23, 4445-4453.	1.9	25
30	Effects of fly ash and slag on the properties of magnesium oxysulfate cement. Emerging Materials Research, 2019, 8, 472-482.	0.7	13
31	Drying Shrinkage and Suppression Technology of HPC in Extremely Arid Area. KSCE Journal of Civil Engineering, 2019, 23, 180-190.	1.9	4
32	Study on corrosion and anticorrosion of rebar in magnesium oxychloride cement concrete. Emerging Materials Research, 2019, 8, 94-104.	0.7	15
33	Research on compression behavior of coral aggregate reinforced concrete columns under large eccentric compression loading. Ocean Engineering, 2018, 155, 251-260.	4.3	22
34	Experimental study on reinforced concrete largeâ€eccentricity compressive column of basic magnesium sulfate cement concreteâ€"in different curing conditions. Structural Concrete, 2018, 19, 1608-1618.	3.1	10
35	Study of using light-burned dolomite ores as raw material to produce magnesium oxysulfate cement. Advances in Cement Research, 2018, 30, 437-450.	1.6	17
36	Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement. Construction and Building Materials, 2018, 169, 697-704.	7.2	121

#	Article	IF	CITATIONS
37	Freeze–thaw durability of air-entrained concrete under various types of salt lake brine exposure. Magazine of Concrete Research, 2018, 70, 928-937.	2.0	17
38	Freeze–thaw damage to high-performance concrete with synthetic fibre and fly ash due to ethylene glycol deicer. Construction and Building Materials, 2018, 187, 197-204.	7.2	30
39	Study on the injectability of a novel glucose modified magnesium potassium phosphate chemically bonded ceramic. Materials Science and Engineering C, 2017, 79, 894-900.	7.3	21
40	Microstructural Evolution of Concrete under the Attack of Chemical, Salt Crystallization, and Bending Stress. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	20
41	Durability of concrete structures in tropical atoll environment. Ocean Engineering, 2017, 135, 1-10.	4.3	94
42	Study on the micro-crack evolution of concrete subjected to stress corrosion and magnesium sulfate. Construction and Building Materials, 2017, 141, 453-460.	7.2	39
43	Application of the grey system theory to predict the chloride ion capacity of concrete subjected to salt lake environment., 2017,,.		0
44	Effect of Calcined MgO-rich Byproduct from the Extraction of Li ₂ CO ₃ on the Performance of Magnesium Phosphate Cement. Journal of Advanced Concrete Technology, 2017, 15, 749-759.	1.8	4
45	Experimental investigation of whole stress-strain curves of coral concrete. Construction and Building Materials, 2016, 122, 81-89.	7.2	188
46	Chloride diffusion study of coral concrete in a marine environment. Construction and Building Materials, 2016, 123, 47-58.	7.2	157
47	Effects of calcination temperature of boron-containing magnesium oxide raw materials on properties of magnesium phosphate cement as a biomaterial. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 671-676.	1.0	8
48	The effect of slag on the properties of magnesium potassium phosphate cement. Construction and Building Materials, 2016, 126, 313-320.	7.2	64
49	Effects of citric acid on hydration process and mechanical properties of thermal decomposed magnesium oxychloride cement. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 114-118.	1.0	33
50	Magnesium potassium phosphate cement prepared by the byproduct of magnesium oxide after producing Li2CO3 from salt lakes. Ceramics International, 2014, 40, 13543-13551.	4.8	44
51	Compressive strength of fly ash magnesium oxychloride cement containing granite wastes. Construction and Building Materials, 2013, 38, 1-7.	7.2	150
52	Influence of fly ash and silica fume on water-resistant property of magnesium oxychloride cement. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 721-724.	1.0	58
53	Durability of concrete subjected to the combined actions of flexural stress, freeze-thaw cycles and bittern solutions. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 893-900.	1.0	18
54	Apparent activation energy of concrete in early age determined by adiabatic test. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 537-541.	1.0	14