William W Navarre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6842499/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity, 2022, 55, 324-340.e8.	14.3	179
2	Acids produced by lactobacilli inhibit the growth of commensal <i>Lachnospiraceae</i> and S24-7 bacteria. Gut Microbes, 2022, 14, 2046452.	9.8	17
3	The CIAMIB: a Large and Metabolically Diverse Collection of Inflammation-Associated Bacteria from the Murine Gut. MBio, 2022, , e0294921.	4.1	11
4	Stress-Induced Block in Dicarboxylate Uptake and Utilization in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2021, 203, .	2.2	5
5	Xenogeneic Silencing and Bacterial Genome Evolution: Mechanisms for DNA Recognition Imply Multifaceted Roles of Xenogeneic Silencers. Molecular Biology and Evolution, 2021, 38, 4135-4148.	8.9	16
6	The <i>Salmonella</i> LysR Family Regulator RipR Activates the SPI-13-Encoded Itaconate Degradation Cluster. Infection and Immunity, 2020, 88, .	2.2	18
7	Complete Genome Sequence of Streptococcus salivarius DB-B5, a Novel Probiotic Candidate Isolated from the Supragingival Plaque of a Healthy Female Subject. Microbiology Resource Announcements, 2020, 9, .	0.6	2
8	Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer. Nature Communications, 2020, 11, 1802.	12.8	58
9	Predicting the mechanism and rate of H-NS binding to AT-rich DNA. PLoS Computational Biology, 2019, 15, e1006845.	3.2	22
10	The Evolution of SlyA/RovA Transcription Factors from Repressors to Countersilencers in <i>Enterobacteriaceae</i> . MBio, 2019, 10, .	4.1	26
11	Xenogeneic Silencing and Horizontal Gene Transfer. , 2019, , 1-27.		2
12	Growth Phase-Dependent Chromosome Condensation and Heat-Stable Nucleoid-Structuring Protein Redistribution in Escherichia coli under Osmotic Stress. Journal of Bacteriology, 2019, 201, .	2.2	10
13	Early-life programming of mesenteric lymph node stromal cell identity by the lymphotoxin pathway regulates adult mucosal immunity. Science Immunology, 2019, 4, .	11.9	23
14	How bacterial xenogeneic silencer rok distinguishes foreign from self DNA in its resident genome. Nucleic Acids Research, 2018, 46, 10514-10529.	14.5	23
15	Spatial Distribution of H-NS in E. coli under Environmental Stress. Biophysical Journal, 2018, 114, 536a-537a.	0.5	0
16	Xenogeneic Silencing and Its Impact on Bacterial Genomes. Annual Review of Microbiology, 2016, 70, 199-213.	7.3	79
17	The Impact of Gene Silencing on Horizontal Gene Transfer and Bacterial Evolution. Advances in Microbial Physiology, 2016, 69, 157-186.	2.4	41
18	Exploring the Mechanics and Dynamics of Gene Silencing Proteins. Biophysical Journal, 2016, 110, 236a.	0.5	0

WILLIAM W NAVARRE

#	Article	IF	CITATIONS
19	A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT. PLoS Pathogens, 2015, 11, e1004967.	4.7	53
20	Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa. MBio, 2015, 6, e00823.	4.1	56
21	Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution. Current Opinion in Microbiology, 2015, 23, 8-13.	5.1	56
22	Elongation factor-P at the crossroads of the host-endosymbiont interface. Microbial Cell, 2015, 2, 360-362.	3.2	2
23	Silencing by H-NS Potentiated the Evolution of Salmonella. PLoS Pathogens, 2014, 10, e1004500.	4.7	87
24	EF-P Dependent Pauses Integrate Proximal and Distal Signals during Translation. PLoS Genetics, 2014, 10, e1004553.	3.5	85
25	Translation Initiation Rate Determines the Impact of Ribosome Stalling on Bacterial Protein Synthesis. Journal of Biological Chemistry, 2014, 289, 28160-28171.	3.4	56
26	A biomechanical mechanism for initiating DNA packaging. Nucleic Acids Research, 2014, 42, 11921-11927.	14.5	12
27	Molecular evolution of protein-RNA mimicry as a mechanism for translational control. Nucleic Acids Research, 2014, 42, 3261-3271.	14.5	25
28	Gut Microbial Metabolism Drives Transformation of Msh2-Deficient Colon Epithelial Cells. Cell, 2014, 158, 288-299.	28.9	375
29	(R)-β-Lysine-modified Elongation Factor P Functions in Translation Elongation. Journal of Biological Chemistry, 2013, 288, 4416-4423.	3.4	51
30	Divergent Protein Motifs Direct Elongation Factor P-Mediated Translational Regulation in Salmonella enterica and Escherichia coli. MBio, 2013, 4, e00180-13.	4.1	83
31	Structural Insights into the Regulation of Foreign Genes in Salmonella by the Hha/H-NS Complex. Journal of Biological Chemistry, 2013, 288, 13356-13369.	3.4	61
32	Loss of Elongation Factor P Disrupts Bacterial Outer Membrane Integrity. Journal of Bacteriology, 2012, 194, 413-425.	2.2	65
33	Loss of Elongation Factor P Disrupts Bacterial Outer Membrane Integrity. Journal of Bacteriology, 2012, 194, 4484-4484.	2.2	1
34	Silencing of foreign DNA in bacteria. Current Opinion in Microbiology, 2012, 15, 175-181.	5.1	96
35	Multiple Targets of Nitric Oxide in the Tricarboxylic Acid Cycle of Salmonella enterica Serovar Typhimurium. Cell Host and Microbe, 2011, 10, 33-43.	11.0	112
36	The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nature Chemical Biology, 2011, 7, 667-669.	8.0	88

WILLIAM W NAVARRE

#	Article	IF	CITATIONS
37	\hat{I}^2 -Lysine discrimination by lysyl-tRNA synthetase. FEBS Letters, 2011, 585, 3284-3288.	2.8	12
38	The 5.5 Protein of Phage T7 Inhibits H-NS through Interactions with the Central Oligomerization Domain. Journal of Bacteriology, 2011, 193, 4881-4892.	2.2	37
39	Elongation factor P mediates a novel post-transcriptional regulatory pathway critical for bacterial virulence. Virulence, 2011, 2, 147-151.	4.4	31
40	Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10690-10695.	7.1	204
41	H-NS as a Defence System. , 2010, , 251-322.		6
42	PoxA, YjeK, and Elongation Factor P Coordinately Modulate Virulence and Drug Resistance in Salmonella enterica. Molecular Cell, 2010, 39, 209-221.	9.7	147
43	Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5154-5159.	7.1	192
44	Lsr2 of <i>Mycobacterium</i> Represents a Novel Class of H-NS-Like Proteins. Journal of Bacteriology, 2008, 190, 7052-7059.	2.2	109
45	Silencing of xenogeneic DNA by H-NS—facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes and Development, 2007, 21, 1456-1471.	5.9	262
46	The response regulator SsrB activates expression of diverse <i>Salmonella</i> pathogenicity island 2 promoters and counters silencing by the nucleoidâ€associated protein Hâ€NS. Molecular Microbiology, 2007, 65, 477-493.	2.5	135
47	H-NS promotes looped domain formation in the bacterial chromosome. Current Biology, 2007, 17, R913-R914.	3.9	91
48	Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in <i>Salmonella</i> . Science, 2006, 313, 236-238.	12.6	672
49	Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Molecular Microbiology, 2005, 56, 492-508.	2.5	203
50	Comparison of the PhoPQ Regulon in Escherichia coli and Salmonella typhimurium. Journal of Molecular Evolution, 2005, 60, 462-474.	1.8	106
51	Regulation of <i>Salmonella typhimurium</i> virulence gene expression by cationic antimicrobial peptides. Molecular Microbiology, 2003, 50, 219-230.	2.5	242
52	Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes and Infection, 2001, 3, 1201-1212.	1.9	109
53	Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Microreview. Cellular Microbiology, 2000, 2, 265-273.	2.1	186
54	Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope. Microbiology and Molecular Biology Reviews, 1999, 63, 174-229.	6.6	1,170

#	Article	IF	CITATIONS
55	Multiple Enzymatic Activities of the Murein Hydrolase from Staphylococcal Phage φ11. Journal of Biological Chemistry, 1999, 274, 15847-15856.	3.4	154
56	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1998, 273, 29135-29142.	3.4	52
57	Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Molecular Microbiology, 1994, 14, 115-121.	2.5	374