Ruike Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine Learningâ€Evolutionary Algorithm Enabled Design for 4Dâ€Printed Active Composite Structures. Advanced Functional Materials, 2022, 32, 2109805.	7.8	47
2	Hexagonal ring origami—Snap-folding with large packing ratio. Extreme Mechanics Letters, 2022, 53, 101713.	2.0	10
3	Soft robotic origami crawler. Science Advances, 2022, 8, eabm7834.	4.7	125
4	Multiâ€Color 3D Printing via Singleâ€Vat Grayscale Digital Light Processing. Advanced Functional Materials, 2022, 32, .	7.8	22
5	Phase diagram and mechanics of snap-folding of ring origami by twisting. International Journal of Solids and Structures, 2022, 248, 111685.	1.3	10
6	Hexagonal Ring Origami Assemblies: Foldable Functional Structures With Extreme Packing. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	6
7	Spinning-enabled wireless amphibious origami millirobot. Nature Communications, 2022, 13, .	5.8	68
8	Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials. ACS Applied Materials & Interfaces, 2022, 14, 33892-33902.	4.0	33
9	Magnetically Actuated Reconfigurable Metamaterials as Conformal Electromagnetic Filters. Advanced Intelligent Systems, 2022, 4, .	3.3	14
10	Magnetoâ€Mechanical Metamaterials with Widely Tunable Mechanical Properties and Acoustic Bandgaps. Advanced Functional Materials, 2021, 31, 2005319.	7.8	115
11	Magnetic Multimaterial Printing for Multimodal Shape Transformation with Tunable Properties and Shiftable Mechanical Behaviors. ACS Applied Materials & Interfaces, 2021, 13, 12639-12648.	4.0	101
12	Preface: Forum on Novel Stimuli-Responsive Materials for 3D Printing. ACS Applied Materials & Interfaces, 2021, 13, 12637-12638.	4.0	1
13	Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures. Advanced Materials, 2021, 33, e2102113.	11.1	88
14	Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nature Communications, 2021, 12, 3435.	5.8	130
15	Deciphering and engineering tissue folding: A mechanical perspective. Acta Biomaterialia, 2021, 134, 32-42.	4.1	5
16	Reprogrammable Materials: Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures (Adv. Mater. 30/2021). Advanced Materials, 2021, 33, 2170236.	11.1	0
17	Ring Origami: Snapâ€Folding of Rings with Different Geometries. Advanced Intelligent Systems, 2021, 3, 2100107.	3.3	14
18	Stretchable origami robotic arm with omnidirectional bending and twisting. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118	3.3	151

Ruike Zhao

#	Article	IF	CITATIONS
19	Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation. Advanced Materials, 2020, 32, e1906657.	11.1	367
20	Untethered control of functional origami microrobots with distributed actuation. Proceedings of the United States of America, 2020, 117, 24096-24101.	3.3	166
21	Magnetoactuated Reconfigurable Antennas on Hard-Magnetic Soft Substrates and E-Threads. IEEE Transactions on Antennas and Propagation, 2020, 68, 5882-5892.	3.1	7
22	Evolutionary Algorithmâ€Guided Voxelâ€Encoding Printing of Functional Hardâ€Magnetic Soft Active Materials. Advanced Intelligent Systems, 2020, 2, 2000060.	3.3	93
23	Self-adaptive flexible valve as passive flow regulator. Extreme Mechanics Letters, 2020, 39, 100824.	2.0	12
24	Multifunctional magnetic soft composites: a review. Multifunctional Materials, 2020, 3, 042003.	2.4	159
25	Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	40
26	Symmetry-Breaking Actuation Mechanism for Soft Robotics and Active Metamaterials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41649-41658.	4.0	130
27	Mechanics of hard-magnetic soft materials. Journal of the Mechanics and Physics of Solids, 2019, 124, 244-263.	2.3	307
28	Kirigami enhances film adhesion. Soft Matter, 2018, 14, 2515-2525.	1.2	74
29	Soft wall-climbing robots. Science Robotics, 2018, 3, .	9.9	419
30	Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362, 665-670.	6.0	208
31	Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7503-7508.	3.3	60
32	Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558, 274-279.	13.7	1,426
33	Multimodal Surface Instabilities in Curved Film–Substrate Structures. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	39
34	<i>Ruga</i> mechanics of creasing: from instantaneous to setback creases. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120753.	1.0	52