
Melania Lo iacono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut, 2022, 71, 119-128.	12.1	46
2	Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells. Cancers, 2022, 14, 673.	3.7	4
3	Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51. Oncogene, 2022, 41, 2196-2209.	5.9	8
4	Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules, 2022, 12, 702.	4.0	3
5	CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. IScience, 2021, 24, 102664.	4.1	31
6	Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nature Communications, 2021, 12, 5006.	12.8	38
7	Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy. Cancers, 2021, 13, 3927.	3.7	20
8	FACS-based protocol to assess cytotoxicity and clonogenic potential of colorectal cancer stem cells using a Wnt/β-catenin signaling pathway reporter. STAR Protocols, 2021, 2, 100880.	1.2	1
9	Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro. Stem Cell Reviews and Reports, 2019, 15, 900-918.	3.8	24
10	Wharton's Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review. Stem Cell Reviews and Reports, 2017, 13, 35-49.	5.6	20
11	Wharton's Jelly Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes. , 2014, , 313-323.		1
12	Isolation and Characterization of CD276+/HLA-E+ Human Subendocardial Mesenchymal Stem Cells from Chronic Heart Failure Patients: Analysis of Differentiative Potential and Immunomodulatory Markers Expression. Stem Cells and Development, 2013, 22, 1-17.	2.1	23
13	New Frontiers in Regenerative Medicine in Cardiology: The Potential of Wharton's Jelly Mesenchymal Stem Cells. Current Stem Cell Research and Therapy, 2013, 8, 39-45.	1.3	30
14	Human Wharton's Jelly Mesenchymal Stem Cells Maintain the Expression of Key Immunomodulatory Molecules When Subjected to Osteogenic, Adipogenic and Chondrogenic Differentiation In Vitro: New Perspectives for Cellular Therapy. Current Stem Cell Research and Therapy, 2013, 8, 100-113.	1.3	77
15	Wharton's Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes. Stem Cell Reviews and Reports, 2011, 7, 342-363.	5.6	135
16	New Emerging Potentials for Human Wharton's Jelly Mesenchymal Stem Cells: Immunological Features and Hepatocyte-Like Differentiative Capacity. Stem Cells and Development, 2010, 19, 423-438.	2.1	192
17	Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 2009, 131, 267-282.	1.7	260
18	Role of endothelial cell stress in the pathogenesis of chronic heart failure. Frontiers in Bioscience - Landmark, 2009, Volume, 2238.	3.0	17