Juan Carlos Ribas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/684155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Septin filament compaction into rings requires the anillin Mid2 and contractile ring constriction. Cell Reports, 2022, 39, 110722.	2.9	8
2	Analysis and application of a suite of recombinant endo-β(1,3)-d-glucanases for studying fungal cell walls. Microbial Cell Factories, 2021, 20, 126.	1.9	11
3	Natural products targeting the synthesis of $\hat{l}^2(1,3)$ -D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine, 2021, 88, 153556.	2.3	26
4	Echinocandin Drugs Induce Differential Effects in Cytokinesis Progression and Cell Integrity. Pharmaceuticals, 2021, 14, 1332.	1.7	3
5	Approaches to the mechanism of antifungal activity of Zuccagnia punctata-Larrea nitida bi-herbal combination. Phytomedicine, 2019, 54, 291-301.	2.3	15
6	Novel Cell Wall Antifungals Reveal a Special Synergistic Activity in pbr1 Mutants Resistant to the Glucan Synthesis Antifungals Papulacandins and Echinocandins. Frontiers in Microbiology, 2019, 10, 1692.	1.5	2
7	Two S. pombe septation phases differ in ingression rate, septum structure, and response to F-actin loss. Journal of Cell Biology, 2019, 218, 4171-4194.	2.3	14
8	The antifungal activity and mechanisms of action of quantified extracts from berries, leaves and roots of Phytolacca tetramera Phytomedicine, 2019, 60, 152884.	2.3	17
9	The fungal cell wall as a target for the development of new antifungal therapies. Biotechnology Advances, 2019, 37, 107352.	6.0	88
10	Paxillin-Mediated Recruitment of Calcineurin to the Contractile Ring Is Required for the Correct Progression of Cytokinesis in Fission Yeast. Cell Reports, 2018, 25, 772-783.e4.	2.9	23
11	Fission yeast cell wall biosynthesis and cell integrity signalling. Cell Surface, 2018, 4, 1-9.	1.5	35
12	Specific detection of fission yeast primary septum reveals septum and cleavage furrow ingression during early anaphase independent of mitosis completion. PLoS Genetics, 2018, 14, e1007388.	1.5	18
13	Radioactive Labeling and Fractionation of Fission Yeast Walls. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091744.	0.2	2
14	Fission Yeast Cell Wall Analysis. Cold Spring Harbor Protocols, 2017, 2017, pdb.top079897.	0.2	4
15	Overview of fission yeast septation. Cellular Microbiology, 2016, 18, 1201-1207.	1.1	18
16	The Cell Biology of Fission Yeast Septation. Microbiology and Molecular Biology Reviews, 2016, 80, 779-791.	2.9	45
17	Fission yeast septation. Communicative and Integrative Biology, 2016, 9, e1189045.	0.6	19
18	Imaging Septum Formation by Fluorescence Microscopy. Methods in Molecular Biology, 2016, 1369, 73-85.	0.4	5

JUAN CARLOS RIBAS

#	Article	IF	CITATIONS
19	A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast. PLoS Genetics, 2016, 12, e1006383.	1.5	29
20	Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics, 2015, 16, 683.	1.2	54
21	A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus. Frontiers in Microbiology, 2015, 6, 983.	1.5	54
22	Cooperation between Paxillin-like Protein Pxl1 and Glucan Synthase Bgs1 Is Essential for Actomyosin Ring Stability and Septum Formation in Fission Yeast. PLoS Genetics, 2015, 11, e1005358.	1.5	59
23	New Cell Wall-Affecting Antifungal Antibiotics. , 2014, , 237-268.		2
24	Fungal Cell Wall Analysis. , 2013, , 175-196.		6
25	Extracellular cell wall $\hat{I}^2(1,3)$ glucan is required to couple septation to actomyosin ring contraction. Journal of Cell Biology, 2013, 203, 265-282.	2.3	84
26	Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission. Journal of Cell Biology, 2012, 198, 637-656.	2.3	83
27	Totivirus. , 2011, , 1937-1942.		1
28	Differential Activities of Three Families of Specific β(1,3)Glucan Synthase Inhibitors in Wild-type and Resistant Strains of Fission Yeast. Journal of Biological Chemistry, 2011, 286, 3484-3496.	1.6	46
29	The (1,3)β-d-glucan synthase subunit Bgs1p is responsible for the fission yeast primary septum formation. Molecular Microbiology, 2007, 65, 201-217.	1.2	103
30	The novel fission yeast (1,3)β-D-glucan synthase catalytic subunit Bgs4p is essential during both cytokinesis and polarized growth. Journal of Cell Science, 2005, 118, 157-174.	1.2	130
31	In vitro Antifungal Properties, Structure-activity Relationships and Studies on the Mode of Action of N-Phenyl, N-Aryl, N-Phenylalkyl Maleimides and Related Compounds. Arzneimittelforschung, 2005, 55, 123-132.	0.5	12
32	Schizosaccharomyces pombe Pmr1p Is Essential for Cell Wall Integrity and Is Required for Polarized Cell Growth and Cytokinesis. Eukaryotic Cell, 2004, 3, 1124-1135.	3.4	35
33	Anin vitroassay for (1 → 6)-β-D-glucan synthesis inSaccharomyces cerevisiae. Yeast, 2004, 21, 1121-1131.	0.8	36
34	Cell wall analysis. Methods, 2004, 33, 245-251.	1.9	74
35	In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorganic and Medicinal Chemistry, 2003, 11, 1531-1550.	1.4	108
36	Synthesis, in vitro/in vivo Antifungal Evaluation and Structure-Activity Relationship Study of 3(2H)-Pyridazinones. Arzneimittelforschung, 2003, 53, 738-743.	0.5	0

JUAN CARLOS RIBAS

#	Article	IF	CITATIONS
37	In vitro Inhibition of 1,3-β-Glucan Synthase by Glycolipids from Convolvulaceous Species. Planta Medica, 2002, 68, 739-742.	0.7	18
38	Localization of the (1,3)β-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. Journal of Cell Science, 2002, 115, 4081-4096.	1.2	135
39	Totivirus. , 2002, , 1203-1208.		Ο
40	Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant Journal, 2001, 25, 271-280.	2.8	53
41	In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorganic and Medicinal Chemistry, 2001, 9, 1999-2013.	1.4	275
42	The Double-Stranded RNA Viruses of Saccharomyces Cerevisiae. , 2001, , 67-108.		1
43	A family of multifunctional thiamine-repressible expression vectors for fission yeast. Yeast, 2000, 16, 861-872.	0.8	88
44	bgs2+, a sporulation-specific glucan synthase homologue is required for proper ascospore wall maturation in fission yeast. Molecular Microbiology, 2000, 38, 308-321.	1.2	63
45	Inhibitors of the fungal cell wall. Synthesis of 4-aryl-4- N -arylamine-1-butenes and related compounds with inhibitory activities on β(1–3) glucan and chitin synthases. Bioorganic and Medicinal Chemistry, 2000, 8, 691-698.	1.4	94
46	Schizosaccharomyces pombe ehs1p is involved in maintaining cell wall integrity and in calcium uptake. Molecular Genetics and Genomics, 2000, 264, 173-183.	2.4	31
47	The Gag Domain of the Gag-Pol Fusion Protein Directs Incorporation into the L-A Double-stranded RNA Viral Particles inSaccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 9306-9311.	1.6	30
48	cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. Journal of Bacteriology, 1997, 179, 7653-7662.	1.0	123
49	Cytosolic Ca2+Gradients in Pancreatic Islet-Cells Stimulated by Glucose and Carbachol. Biochemical and Biophysical Research Communications, 1997, 235, 465-468.	1.0	19
50	RNA-dependent RNA polymerase activity related to the 20S RNA replicon ofSaccharomyces cerevisiae. , 1996, 12, 1219-1228.		2
51	Saccharomyces cerevisiae L-BC double-stranded RNA virus replicase recognizes the L-A positive-strand RNA 3' end. Journal of Virology, 1996, 70, 292-297.	1.5	10
52	Decoying the Cap ² mRNA Degradation System by a Double-Stranded RNA Virus and Poly(A) ² mRNA Surveillance by a Yeast Antiviral System. Molecular and Cellular Biology, 1995, 15, 2763-2771.	1.1	141
53	Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae. Journal of Bacteriology, 1995, 177, 5732-5739.	1.0	81
54	His-154 is involved in the linkage of the Saccharomyces cerevisiae L-A double-stranded RNA virus Gag protein to the cap structure of mRNAs and is essential for M1 satellite virus expression Molecular and Cellular Biology, 1994, 14, 2664-2674.	1.1	56

JUAN CARLOS RIBAS

#	Article	IF	CITATIONS
55	A cryptic RNA-binding domain in the Pol region of the L-A double-stranded RNA virus Gag-Pol fusion protein. Journal of Virology, 1994, 68, 6014-6020.	1.5	17
56	RNA-dependent RNA polymerase consensus sequence of the L-A double-stranded RNA virus: definition of essential domains Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2185-2189.	3.3	64
57	Pol of gag–pol fusion protein required for encapsidation of viral RNA of yeast L-A virus. Nature, 1992, 359, 746-749.	13.7	106
58	Isolation and characterization of Schizosaccharomyces pombe mutants defective in cell wall (1-3)beta-D-glucan. Journal of Bacteriology, 1991, 173, 3456-3462.	1.0	106
59	Characterization of aSchizosaccharomyces pombemorphological mutant altered in the galactomannan content. FEMS Microbiology Letters, 1991, 79, 263-268.	0.7	33
60	Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white. Journal of Bacteriology, 1988, 170, 1950-1954.	1.0	156
61	Effect of calcofluor white on chitin synthases from Saccharomyces cerevisiae. Journal of Bacteriology, 1988, 170, 1945-1949.	1.0	71
62	Isolation and characterization of mutants from Schyzosaccharomyces pombe defective in glycerol catabolism. FEBS Journal, 1986, 159, 171-174.	0.2	32