Gabriella Lupo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Efficiency of Lutein and Astaxanthin in the Protection of Human Corneal Epithelial Cells In Vitro from Blue-Violet Light Photo-Oxidative Damage. Applied Sciences (Switzerland), 2022, 12, 1268.	2.5	4
2	The Anti-Inflammatory Effect of the β1-Adrenergic Receptor Antagonist Metoprolol on High Glucose Treated Human Microvascular Retinal Endothelial Cells. Cells, 2022, 11, 51.	4.1	6
3	Antioxidant, antimicrobial and anticancer activities of <i>Castanea sativa</i> (Fagaceae) extract: new therapeutic perspectives. Plant Biosystems, 2021, 155, 1032-1040.	1.6	7
4	The GAUGAA Motif Is Responsible for the Binding between circSMARCA5 and SRSF1 and Related Downstream Effects on Glioblastoma Multiforme Cell Migration and Angiogenic Potential. International Journal of Molecular Sciences, 2021, 22, 1678.	4.1	43
5	Effects of High Glucose Concentration on Pericyte-Like Differentiated Human Adipose-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 4604.	4.1	16
6	Ferulic Acid-Loaded Polymeric Nanoparticles for Potential Ocular Delivery. Pharmaceutics, 2021, 13, 687.	4.5	20
7	Glucose-Impaired Corneal Re-Epithelialization Is Promoted by a Novel Derivate of Dimethyl Fumarate. Antioxidants, 2021, 10, 831.	5.1	6
8	Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World Journal of Stem Cells, 2021, 13, 632-644.	2.8	27
9	Haloperidol Metabolite II Valproate Ester (<i>S</i>)-(â^')-MRJF22: Preliminary Studies as a Potential Multifunctional Agent Against Uveal Melanoma. Journal of Medicinal Chemistry, 2021, 64, 13622-13632.	6.4	9
10	Activation of the VEGF-A/ERK/PLA2 Axis Mediates Early Retinal Endothelial Cell Damage Induced by High Glucose: New Insight from an In Vitro Model of Diabetic Retinopathy. International Journal of Molecular Sciences, 2020, 21, 7528.	4.1	35
11	Isolation and Characterization of a New Human Corneal Epithelial Cell Line: HCE-F. Cornea, 2020, 39, 1419-1425.	1.7	5
12	Uveal Melanoma Cells Elicit Retinal Pericyte Phenotypical and Biochemical Changes in an in Vitro Model of Coculture. International Journal of Molecular Sciences, 2020, 21, 5557.	4.1	13
13	Anti-Angiogenic and Anti-Proliferative Graphene Oxide Nanosheets for Tumor Cell Therapy. International Journal of Molecular Sciences, 2020, 21, 5571.	4.1	20
14	Ixazomib Improves Bone Remodeling and Counteracts Sonic Hedgehog Signaling Inhibition Mediated by Myeloma Cells. Cancers, 2020, 12, 323.	3.7	22
15	Novel indole derivatives targeting HuR-mRNA complex to counteract high glucose damage in retinal endothelial cells. Biochemical Pharmacology, 2020, 175, 113908.	4.4	27
16	Atropine Differentially Modulates ECM Production by Ocular Fibroblasts, and Its Ocular Surface Toxicity Is Blunted by Colostrum. Biomedicines, 2020, 8, 78.	3.2	11
17	Droplet digital PCR for the detection and monitoring of Legionella pneumophila. International Journal of Molecular Medicine, 2020, 46, 1777-1782.	4.0	15
18	The double effect of walnut septum extract (Juglans regia L.) counteracts A172 glioblastoma cell survival and bacterial growth. International Journal of Oncology, 2020, 57, 1129-1144.	3.3	11

#	Article	IF	CITATIONS
19	Antiâ€angiogenic effect of quercetin and its 8â€methyl pentamethyl ether derivative in human microvascular endothelial cells. Journal of Cellular and Molecular Medicine, 2019, 23, 6565-6577.	3.6	35
20	A Tunable Nanoplatform of Nanogold Functionalised with Angiogenin Peptides for Anti-Angiogenic Therapy of Brain Tumours. Cancers, 2019, 11, 1322.	3.7	21
21	TLR4 signaling drives mesenchymal stromal cells commitment to promote tumor microenvironment transformation in multiple myeloma. Cell Death and Disease, 2019, 10, 704.	6.3	36
22	Pericytes in Microvessels: From "Mural―Function to Brain and Retina Regeneration. International Journal of Molecular Sciences, 2019, 20, 6351.	4.1	79
23	Effect of Lipoic Acid on the Biochemical Mechanisms of Resistance to Bortezomib in SH-SY5Y Neuroblastoma Cells. Molecular Neurobiology, 2018, 55, 3344-3350.	4.0	8
24	Blood–Brain Barrier in a Haemophilus influenzae Type a In Vitro Infection: Role of Adenosine Receptors A2A and A2B. Molecular Neurobiology, 2018, 55, 5321-5336.	4.0	23
25	Comparison Between Folic Acid and gH625 Peptide-Based Functionalization of Fe3O4 Magnetic Nanoparticles for Enhanced Cell Internalization. Nanoscale Research Letters, 2018, 13, 45.	5.7	19
26	Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions. Molecular Medicine Reports, 2017, 16, 4393-4402.	2.4	60
27	Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflammation Research, 2017, 66, 947-959.	4.0	139
28	Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Biochemical Pharmacology, 2017, 142, 145-154.	4.4	42
29	Ferritin-supported lipid bilayers for triggering the endothelial cell response. Colloids and Surfaces B: Biointerfaces, 2017, 149, 48-55.	5.0	12
30	Melanogenesis in uveal melanoma cells: Effect of argan oil. International Journal of Molecular Medicine, 2017, 40, 1277-1284.	4.0	4
31	Gabapentin Attenuates Ocular Inflammation: In vitro and In vivo Studies. Frontiers in Pharmacology, 2017, 8, 173.	3.5	29
32	Molecular Mechanisms Mediating Antiangiogenic Action of the Urokinase Receptor-Derived Peptide UPARANT in Human Retinal Endothelial Cells. , 2016, 57, 5723.		19
33	Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM). Nutrients, 2016, 8, 611.	4.1	29
34	Cytosolic and Calcium-Independent Phospholipases A2 Activation and Prostaglandins E2 Are Associated with Escherichia coli-Induced Reduction of Insulin Secretion in INS-1E Cells. PLoS ONE, 2016, 11, e0159874.	2.5	4
35	Antiangiogenic Effect of (±)-Haloperidol Metabolite II Valproate Ester [(±)-MRJF22] in Human Microvascular Retinal Endothelial Cells. Journal of Medicinal Chemistry, 2016, 59, 9960-9966. 	6.4	37
36	Anti-angiogenic Therapy in Cancer: Downsides and New Pivots for Precision Medicine. Frontiers in Pharmacology, 2016, 07, 519.	3.5	59

#	Article	IF	CITATIONS
37	Asthenozoospermia and membrane remodeling enzymes: a new role for phospholipase A ₂ . Andrology, 2015, 3, 1173-1182.	3.5	10
38	Role of cytosolic and calcium independent phospholipases A ₂ in insulin secretion impairment of INSâ€1E cells infected by <i>S. aureus</i> . FEBS Letters, 2015, 589, 3969-3976.	2.8	8
39	Aflibercept, bevacizumab and ranibizumab prevent glucose-induced damage in human retinal pericytes in vitro, through a PLA2/COX-2/VEGF-A pathway. Biochemical Pharmacology, 2015, 96, 278-287.	4.4	63
40	PJ-34 inhibits PARP-1 expression and ERK phosphorylation in glioma-conditioned brain microvascular endothelial cells. European Journal of Pharmacology, 2015, 761, 55-64.	3.5	18
41	Endothelial PKCα-MAPK/ERK-phospholipase A2 pathway activation as a response of glioma in a triple culture model. A new role for pericytes?. Biochimie, 2014, 99, 77-87.	2.6	33
42	An in vitro retinoblastoma human triple culture model of angiogenesis: A modulatory effect of TGF-β. Cancer Letters, 2014, 354, 181-188.	7.2	29
43	Klebsiella pneumoniae Induces an Inflammatory Response in an <i>In Vitro</i> Model of Blood-Retinal Barrier. Infection and Immunity, 2014, 82, 851-863.	2.2	9
44	Role of phospholipases A2 in diabetic retinopathy: In vitro and in vivo studies. Biochemical Pharmacology, 2013, 86, 1603-1613.	4.4	67
45	VEGF receptor-1 involvement in pericyte loss induced by <i>Escherichia coli</i> in an <i>in vitro</i> model of blood brain barrier. Cellular Microbiology, 2013, 15, 1367-1384.	2.1	28
46	Involvement of PKCα–MAPK/ERK-phospholipase A2 pathway in the Escherichia coli invasion of brain microvascular endothelial cells. Neuroscience Letters, 2012, 511, 33-37.	2.1	15
47	Microcapillary-like structures prompted by phospholipase A2 activation in endothelial cells and pericytes co-cultures on a polyhydroxymethylsiloxane thin film. Biochimie, 2012, 94, 1860-1870.	2.6	2
48	Protein kinase C activation affects, via the mRNA-binding Hu-antigen R/ELAV protein, vascular endothelial growth factor expression in a pericytic/endothelial coculture model. Molecular Vision, 2012, 18, 2153-64.	1.1	17
49	Cytosolic and calcium-independent phospholipase A2 mediate glioma-enhanced proangiogenic activity of brain endothelial cells. Microvascular Research, 2011, 81, 1-17.	2.5	35
50	Melanoma-Induced Endothelial Cell Growth Involves Phospholipase A2 and COX2 Upregulation. , 2011, , \cdot		0
51	PKCα-MAPK/ERK-phospholipase A2 signaling is required for human melanoma-enhanced brain endothelial cell proliferation and motility. Microvascular Research, 2009, 78, 338-357.	2.5	24
52	Loss of aromatase cytochrome P450 function as a risk factor for Parkinson's disease?. Brain Research Reviews, 2008, 57, 431-443.	9.0	53
53	PKCβII/HuR/VEGF: A new molecular cascade in retinal pericytes for the regulation of VEGF gene expression. Pharmacological Research, 2008, 57, 60-66.	7.1	46
54	UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKC1±/ERK/cPLA2 pathway. Microvascular Research, 2008, 75, 330-342.	2.5	8

#	Article	IF	CITATIONS
55	Expression of Ca2+-independent and Ca2+-dependent phospholipases A2 and cyclooxygenases in human melanocytes and malignant melanoma cell lines. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 635-642.	2.4	26
56	Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade. Journal of Lipid Research, 2007, 48, 782-793.	4.2	54
57	Activation of cytosolic phospholipase A2 and 15-lipoxygenase by oxidized low-density lipoproteins in cultured human lung fibroblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 522-532.	2.4	16
58	MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid β(25–35) peptide in bovine retina pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 172-186.	2.4	23
59	Activation of phospholipase A2 and MAP kinases by oxidized low-density lipoproteins in immortalized GP8.39 endothelial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 135-150.	2.4	39
60	Amyloid β(1–42) and its β(25–35) fragment induce activation and membrane translocation of cytosolic phospholipase A2 in bovine retina capillary pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1686, 125-138.	2.4	30
61	Pericyte adhesion and growth onto polyhydroxymethylsiloxane surfaces nanostructured by plasma treatment and ion irradiation. Microvascular Research, 2004, 68, 209-220.	2.5	20
62	Characterization of glycerophosphocholine phosphodiesterase activity and phosphatidylcholine biosynthesis in cultured retinal microcapillary pericytes. Effect of adenosine and endothelin-1. Lipids, 2003, 38, 45-52.	1.7	7
63	Cytosolic phospholipase A2 mediates arachidonoyl phospholipid hydrolysis in immortalized rat brain endothelial cells stimulated by oxidized LDL. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1585, 19-29.	2.4	18
64	Amyloid β(1–42) and its β(25–35) fragment induce in vitro phosphatidylcholine hydrolysis in bovine retina capillary pericytes. Neuroscience Letters, 2001, 303, 185-188.	2.1	12
65	t-Butyl hydroperoxide and oxidized low density lipoprotein enhance phospholipid hydrolysis in lipopolysaccharide-stimulated retinal pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1531, 143-155.	2.4	31
66	High glucose and advanced glycation end products induce phospholipid hydrolysis and phospholipid enzyme inhibition in bovine retinal pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1533, 128-140.	2.4	12
67	Amyloid β but not bradykinin induces phosphatidylcholine hydrolysis in immortalized rat brain endothelial cells. Neuroscience Letters, 1999, 271, 151-154.	2.1	14
68	Arachidonate transport through the bloodâ€retina and bloodâ€brain barrier of the rat after reperfusion of varying duration following complete cerebral ischemia. International Journal of Developmental Neuroscience, 1998, 16, 103-113.	1.6	6
69	Phosphatidylcholine synthesis-related enzyme activities of bovine brain microvessels exhibit susceptibility to peroxidation. FEBS Letters, 1996, 384, 19-24.	2.8	6
70	Lipid peroxidation inhibits acyl-CoA :- 1-acyl-sn-Glycero-3-phosphocholine O-acyltransferase but not CTP: Phosphocholine cytidylyltransferase activity in rat brain membranes. Neurochemistry International, 1995, 26, 477-487.	3.8	16
71	Evolutionary comparison of enzyme activities of phosphatidylcholine metabolism in the nervous system of an invertebrate (Loligo pealei), lower vertebrate (Mustelus canis) and the rat. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 112, 493-501.	1.6	6
72	Susceptibility of rat retina acyl-CoA: 1-acyl-sn-glycero-3-phosphocholineO-acyltransferase and CTP:phosphocholine cytidylyltransferase activity to lipid peroxidation and hydroperoxide treatment. FEBS Letters, 1994, 347, 123-127.	2.8	6

#	Article	IF	CITATIONS
73	1-Acyl-2-lysophosphatidylcholine transport across the blood-retina and blood-brain barrier. FEBS Letters, 1994, 351, 181-185.	2.8	14
74	Differential transport of docosahexaenoate and palmitate through the blood-retina and blood-brain barrier of the rat. Neuroscience Letters, 1994, 171, 133-136.	2.1	16
75	Lipid hydroperoxides induce changes in palmitate uptake across the rat blood-retina and blood-brain barrier. Neuroscience Letters, 1994, 176, 247-250.	2.1	4
76	Lipid peroxidation inhibits oleoyl-CoA:1-acyl-sn-glycero-3-phosphocholine O-acyltransferase in rat CNS axolemma-enriched fractions. Neurochemistry International, 1993, 23, 229-237.	3.8	7
77	Palmitate transport through the blood-retina and blood-brain barrier of rat visual system during aging. Neuroscience Letters, 1993, 150, 17-20.	2.1	17
78	Aging does not affect the susceptibility to lipid peroxidation and lysosomal enzyme release of rat visual system structures and sciatic nerve. Neurochemistry International, 1993, 23, 157-162.	3.8	3
79	Cytoprotective effect of copper(II) complexes against ethanol-induced damage to rat gastric mucosa. Journal of Inorganic Biochemistry, 1992, 45, 245-259.	3.5	15