Sisi Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841379/publications.pdf

Version: 2024-02-01

		1040056	1281871	
11	307	9	11	
papers	citations	h-index	g-index	
11 all docs	11 docs citations	11 times ranked	437 citing authors	

#	Article	IF	CITATIONS
1	Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery. ACS Applied Materials & English & Engl	8.0	70
2	Reâ€Engineering Poly(Acrylic Acid) Binder toward Optimized Electrochemical Performance for Silicon Lithiumâ€Ion Batteries: Branching Architecture Leads to Balanced Properties of Polymeric Binders. Advanced Functional Materials, 2020, 30, 1908558.	14.9	60
3	Understanding of pre-lithiation of poly(acrylic acid) binder: Striking the balances between the cycling performance and slurry stability for silicon-graphite composite electrodes in Li-ion batteries. Journal of Power Sources, 2019, 416, 125-131.	7.8	50
4	Molecular Design of a Highly Stable Single-Ion Conducting Polymer Gel Electrolyte. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29162-29172.	8.0	38
5	UCST-Type Thermoresponsive Polymers in Synthetic Lubricating Oil Polyalphaolefin (PAO). Macromolecules, 2018, 51, 1674-1680.	4.8	22
6	Restorable Neutralization of Poly(acrylic acid) Binders toward Balanced Processing Properties and Cycling Performance for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57932-57940.	8.0	19
7	Tailoring the Surface of Silicon Nanoparticles for Enhanced Chemical and Electrochemical Stability for Li-lon Batteries. ACS Applied Energy Materials, 2019, 2, 6176-6183.	5.1	17
8	Engineering the Si Anode Interface via Particle Surface Modification: Embedded Organic Carbonates Lead to Enhanced Performance. ACS Applied Energy Materials, 2021, 4, 8193-8200.	5.1	11
9	An <i>in situ</i> generated polymer electrolyte <i>via</i> anionic ring-opening polymerization for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 25927-25933.	10.3	11
10	Poly(4-vinylbenzoic acid): A Re-Engineered Binder for Improved Performance from Water-Free Slurry Processing for Silicon Graphite Composite Electrodes. ACS Applied Energy Materials, 2019, 2, 6348-6354.	5.1	8
11	Poly(Acrylic Acid) Binders: Reâ€Engineering Poly(Acrylic Acid) Binder toward Optimized Electrochemical Performance for Silicon Lithiumâ€ion Batteries: Branching Architecture Leads to Balanced Properties of Polymeric Binders (Adv. Funct. Mater. 10/2020). Advanced Functional Materials, 2020, 30, 2070065.	14.9	1