
D Brian Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6841104/publications.pdf Version: 2024-02-01

D RDIAN FOSTED

#	Article	IF	CITATIONS
1	Cardiac retinoic acid levels decline in heart failure. JCI Insight, 2021, 6, .	2.3	19
2	Valsartan <scp>nanoâ€filaments</scp> alter mitochondrial energetics and promote faster healing in diabetic rat wounds. Wound Repair and Regeneration, 2021, 29, 927-937.	1.5	6
3	Lysine acetylation of F-actin decreases tropomyosin-based inhibition of actomyosin activity. Journal of Biological Chemistry, 2020, 295, 15527-15539.	1.6	7
4	Global knockout of ROMK potassium channel worsens cardiac ischemia-reperfusion injury but cardiomyocyte-specific knockout does not: Implications for the identity of mitoKATP. Journal of Molecular and Cellular Cardiology, 2020, 139, 176-189.	0.9	28
5	Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. Journal of Molecular and Cellular Cardiology, 2020, 139, 135-147.	0.9	19
6	Manipulating Levels of Stressâ€Response Proteins in a Drosophila Model of Myosinâ€Based Inclusion Body Myopathy 3 Worsens Muscle Dysfunction. FASEB Journal, 2020, 34, 1-1.	0.2	0
7	Induced cardiac pacemaker cells survive metabolic stress owing to their low metabolic demand. Experimental and Molecular Medicine, 2019, 51, 1-12.	3.2	9
8	Characterization of the Contribution of Retinoic Acid Receptor Isoforms in the Suppression of Cardiac Hypertrophy. Biophysical Journal, 2019, 116, 131a.	0.2	0
9	Acetylation of Actin K328 Contributes to a Loss in Tropomyosin-Mediated Inhibition of Myosin Binding. Biophysical Journal, 2019, 116, 457a.	0.2	1
10	Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure. Circulation Research, 2018, 123, 356-371.	2.0	189
11	Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight, 2018, 3, .	2.3	33
12	Abstract 586: Early Characterization of the Mechanisms of ATRA-mediated Suppression of Cardiac Hypertrophy. Circulation Research, 2018, 123, .	2.0	0
13	Acetylation of K326 and K328 on Actin Boosts Contractile Properties of Muscle In Vitro and In Vivo. Biophysical Journal, 2017, 112, 483a.	0.2	0
14	Differences in Mirnome, Transcriptome and Mitochondrial Function in 2 Mouse Models of Hypertrophic Cardiomyopathy Atprehypertrophic Stage Suggest Need for Precision Medicine Approach to Treatment. Journal of Cardiac Failure, 2017, 23, S3-S4.	0.7	0
15	Cardiosphere-Derived Cells DemonstrateÂMetabolic Flexibility ThatÂIsÂInfluenced by Adhesion Status. JACC Basic To Translational Science, 2017, 2, 543-560.	1.9	11
16	Abstract 246: Rescuing an Acquired Cardiac Retinoic Acid Deficiency Prevents Hypertrophy and Sudden Cardiac Death in a Pressure Overload/Chronic Catecholamine Model of Hypertrophy and Heart Failure. Circulation Research, 2017, 121, .	2.0	0
17	Seeing the Forest for the Trees. Circulation Research, 2016, 119, 1170-1172.	2.0	4

D BRIAN FOSTER

#	Article	IF	CITATIONS
19	Manual of Cardiovascular Proteomics. , 2016, , .		4
20	Post-translational Modifications in the Cardiovascular Proteome. , 2016, , 293-320.		0
21	Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death. Journal of Proteome Research, 2016, 15, 3009-3028.	1.8	37
22	Organelle, Protein and Peptide Fractionation in Cardiovascular Proteomics. , 2016, , 59-104.		0
23	Glutathione S-Transferase Kappa 1 Knockdown Exacerbates Complex-III-Mediated ROS Production in H9c2 Cardiac Cells. Biophysical Journal, 2015, 108, 603a.	0.2	0
24	Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death. Biophysical Journal, 2015, 108, 612a-613a.	0.2	0
25	A Drosophila Model of Myosin-Based Inclusion Body Myopathy Type 3: Effects on Muscle Structure, Muscle Function and Aggregated Protein Profiles. Biophysical Journal, 2015, 108, 304a.	0.2	1
26	Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance. Frontiers in Physiology, 2015, 6, 116.	1.3	33
27	Cardiac troponin I Pro82Ser variant induces diastolic dysfunction, blunts β-adrenergic response, and impairs myofilament cooperativity. Journal of Applied Physiology, 2015, 118, 212-223.	1.2	10
28	A novel phosphorylation site, Serine 199, in the C-terminus of cardiac troponin I regulates calcium sensitivity and susceptibility to calpain-induced proteolysis. Journal of Molecular and Cellular Cardiology, 2015, 82, 93-103.	0.9	20
29	Diabetic Cardiomyopathy and the Role of Mitochondrial Dysfunction: Novel Insights, Mechanisms, and Therapeutic Strategies. Antioxidants and Redox Signaling, 2015, 22, 1499-1501.	2.5	19
30	Pseudo-Acetylation of Actin Residues K326 and K328 Disrupts Drosophila Flight Performance and Muscle Structure. Biophysical Journal, 2015, 108, 421a-422a.	0.2	1
31	Combined effects of aging and inflammation on renin-angiotensin system mediate mitochondrial dysfunction and phenotypic changes in cardiomyopathies. Oncotarget, 2015, 6, 11979-11993.	0.8	15
32	Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Frontiers in Physiology, 2014, 5, 301.	1.3	71
33	Length-dependent activation is modulated by cardiac troponin I bisphosphorylation at Ser23 and Ser24 but not by Thr143 phosphorylation. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1171-H1181.	1.5	56
34	Phosphorylation of protein kinase C sites Ser42/44 decreases Ca2+-sensitivity and blunts enhanced length-dependent activation in response to protein kinase A in human cardiomyocytes. Archives of Biochemistry and Biophysics, 2014, 554, 11-21.	1.4	16
35	H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal KATP channel. Biochemical and Biophysical Research Communications, 2014, 446, 393-398.	1.0	43
36	Impact of Phosphorylation of the Protein Kinase C Sites Ser42/44, Thr143 and Ser199 of Cardiac Troponin I on Myofilament Function in Human Cardiomyocytes. Biophysical Journal, 2013, 104, 155a.	0.2	1

D BRIAN FOSTER

#	Article	IF	CITATIONS
37	Impact of site-specific phosphorylation of protein kinase A sites Ser ²³ and Ser ²⁴ of cardiac troponin I in human cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H260-H268.	1.5	62
38	Perturbed Length-Dependent Activation in Human Hypertrophic Cardiomyopathy With Missense Sarcomeric Gene Mutations. Circulation Research, 2013, 112, 1491-1505.	2.0	191
39	The Cardiac Acetyl-Lysine Proteome. PLoS ONE, 2013, 8, e67513.	1.1	86
40	Nitroxyl-Mediated Disulfide Bond Formation Between Cardiac Myofilament Cysteines Enhances Contractile Function. Circulation Research, 2012, 111, 1002-1011.	2.0	105
41	Impact of Site Specific Phosphorylation of the Protein Kinase a Sites Ser23 and Ser24 of Cardiac Troponin I on Contractile Function in Human Cardiomyocytes. Biophysical Journal, 2012, 102, 158a.	0.2	0
42	Mitochondrial ROMK Channel Is a Molecular Component of MitoK _{ATP} . Circulation Research, 2012, 111, 446-454.	2.0	184
43	Creatine kinase–mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. Journal of Clinical Investigation, 2012, 122, 291-302.	3.9	117
44	Mitochondrial Protein Phosphorylation as a Regulatory Modality: Implications for Mitochondrial Dysfunction in Heart Failure. Congestive Heart Failure, 2011, 17, 269-282.	2.0	36
45	Constitutive HIF-1α Expression Blunts the Beneficial Effects of Cardiosphere-Derived Cell Therapy in the Heart by Altering Paracrine Factor Balance. Journal of Cardiovascular Translational Research, 2011, 4, 363-372.	1.1	15
46	Redox Regulation of Mitochondrial ATP Synthase. Circulation Research, 2011, 109, 750-757.	2.0	143
47	Identification and characterization of a functional mitochondrial angiotensin system. Proceedings of the United States of America, 2011, 108, 14849-14854.	3.3	238
48	A Mighty Small Heart: The Cardiac Proteome of Adult Drosophila melanogaster. PLoS ONE, 2011, 6, e18497.	1.1	81
49	The C Terminus of Cardiac Troponin I Stabilizes the Ca ²⁺ -Activated State of Tropomyosin on Actin Filaments. Circulation Research, 2010, 106, 705-711.	2.0	55
50	A Systems Biology Approach to Restrictive Cardiomyopathy in Drosophila. Biophysical Journal, 2010, 98, 717a-718a.	0.2	1
51	Effect of troponin I Ser23/24 phosphorylation on Ca2+-sensitivity in human myocardium depends on the phosphorylation background. Journal of Molecular and Cellular Cardiology, 2010, 48, 954-963.	0.9	60
52	Redox signaling and protein phosphorylation in mitochondria: progress and prospects. Journal of Bioenergetics and Biomembranes, 2009, 41, 159-168.	1.0	50
53	EM and 3D-Reconstruction of Thin Filaments Reconstituted with Truncated Troponin I Associated with Myocardial Stunning. Biophysical Journal, 2009, 96, 502a.	0.2	1
54	Structural and Proteomic Analysis of the Drosophila Cardiac Tube. Biophysical Journal, 2009, 96, 502a.	0.2	0

D BRIAN FOSTER

#	Article	IF	CITATIONS
55	Miltenberger blood group antigen type III (Mi.III) enhances the expression of band 3. Blood, 2009, 114, 1919-1928.	0.6	27
56	ls Kir6.1 a subunit of mitoKATP?. Biochemical and Biophysical Research Communications, 2008, 366, 649-656.	1.0	63
57	CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4477-4482.	3.3	142
58	What can mitochondrial proteomics tell us about cardioprotection afforded by preconditioning?. Expert Review of Proteomics, 2008, 5, 633-636.	1.3	14
59	Impaired Diastolic Function After Exchange of Endogenous Troponin I With C-Terminal Truncated Troponin I in Human Cardiac Muscle. Circulation Research, 2006, 99, 1012-1020.	2.0	67
60	Modes of Caldesmon Binding to Actin. Journal of Biological Chemistry, 2004, 279, 53387-53394.	1.6	45
61	C-Terminal Truncation of Cardiac Troponin I Causes Divergent Effects on ATPase and Force. Circulation Research, 2003, 93, 917-924.	2.0	76
62	p21-Activated Kinase Increases the Calcium Sensitivity of Rat Triton-Skinned Cardiac Muscle Fiber Bundles via a Mechanism Potentially Involving Novel Phosphorylation of Troponin I. Circulation Research, 2002, 91, 509-516.	2.0	81
63	cGMPâ€mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery. Journal of Physiology, 2000, 524, 865-878.	1.3	142
64	Phosphorylation of Caldesmon by p21-activated Kinase. Journal of Biological Chemistry, 2000, 275, 1959-1965.	1.6	82
65	In Search of the Proteins That Cause Myocardial Stunning. Circulation Research, 1999, 85, 470-472.	2.0	24
66	Different Molecular Mechanisms for Rho Family GTPase-dependent, Ca2+-independent Contraction of Smooth Muscle. Journal of Biological Chemistry, 1998, 273, 23433-23439.	1.6	135
67	Alignment of caldesmon on the actin-tropomyosin filaments. Biochemical Journal, 1995, 309, 951-957.	1.7	15